Submitted to the faculty of the University Graduate School
in partial fulfilment of the requirements
for the degree
Doctor of Philosophy
in the Department of Computer Science
Indiana University
February 2007

Accepted by the Graduate Faculty, Indiana University, in partial futitinof the
requirements for the degree of Doctor of Philosophy.

Doctoral Committee

January 15, 2007

Prof. Geoffrey C. Fox (Principal Advisor)

Prof. Dennis Gannon

Prof. David Leake

Prof. Beth Plale

Table Of Contents

4

4
4
4
4
4
4
4
4

4
4
4
4
4
4

$% &

%

7

$ %

7 .
3

*
L |

— AR~ P

44

44
44
44

41

41
41

14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
11

0O 00 00 00 OO 0O

0o 00

D

%7 9 "
0 :+ %
3:2 %0
3 ' %
>
* O *
' %
(" %
%7 9 "
*0
%79
%79
%79
' 3
9 ' ?2:02@
70 %
%79
%79
%79
' 3
70 %
%79
%79 '
%79
' 3
3
9
9
9 3
% % % "
9 7
0O +
3 '9

T+ % %

0 % 7

-20 3%

>|| @*

02@ %

>|| @*

02@ %

>|| @*

02@ %

0% -

%

%

%

0

)*

18
Il

#4
#4

8 % A$
84 % 2
84 5 %
84 5 %
81 -
81 0
81
81 5 -
88 " -
(" % & /"
, ;
! %
! %-
14 "
14 - -
R
R
144 " i+
1 -
*
LI
B"
g
0& |/

%
3 ;3" % 5
" %5
%

3 % %
" %

- %

% +

8(
% 81

88

86

I

I #
#(

#4
#1
#6
6(

68

F*

HF

9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"

3" $0
5 non [
5 " CH(- %

447 *3 " 79
41 @* 3,3 30
48 % ' 79

4 Lot % -
44 %

41 5% "%

1 %7 9 " '
11 %7 9 "

1 79" * %
14 " & " " %
11 3'%" '

18 % '

1 %

1# %79 9
16 %79 ' 9

%

%

o — #* o Fr O

(
#

9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"

(

0 b

% 79
% 79
%
%

3 ' %"
% 79
% 79
% 79
% 79
% 79
% 79

%
%

3 " %"
% 79
% 79
% 79
% 79
% 79
% 79

%
%

-8

' 02@
' 02@
I9 1
I9 1
%' @*
%' @*
9
' 9
' 02@
' 02@
%' @*
%' @*
9
9
' 2@
' 2@
9
9 3
-
0O +.30

@*
@*

@*
@*

@*
@*

VI

% ?
% ?
02@'
02@'

% ?

% ?

%
%

% ?

% ?

% ?

% ?

% ?

% ?

%
%

% ?

% ?

% ?

% ?

%]
+?

+2

% 1

% 1

[

% 1

% 1

% 1

1

% 1

B S RN N

-~ O H#H

9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"
9 %"

9 %" !
9 %" !
9 %" !
9 %" !
9 %" !
9 %" !
9%" !

9 %"

9 %" !
9 %" !

86 9 %
8(A %

8 9 5 %
8 O + % %
8 " %

8 4 + " 3
810 + %' D@
8 8 - %
8! 3 %

8# 5 - " -

| . "
roo- - R

| on o "

14 " " wo

17 " " '

18 " 3 "

o " "

r# " 1+

16 vt +
I (: '

VI

% D@ %

+ C

#!
6(

16
8(

86

64
61
6!

6#
66

Chapter 1

Introduction

Geography is the science of studying earth and its feaancksf the distribution of
life on the earth, including human life and the effects of human cfij. Although
geography is often associated merely with studying placdsnaps these are not the
only areas its scope encompasses. Geography studies physidaiman landscapes, the
reasons for their spatial variation, why and how they change owveraind the dynamics
behind these changes. From creating simple maps to statetiabisis of population
distribution to effects of pollution on rain forests geographic dathtaols are being
widely utilized by academia, industry and the governments for staieling almost
every aspect of the modern life.

A Geographic Information System is a system for creatsigring, sharing,
analyzing, manipulating and displaying spatial data and adedcattributes. It can be
used for creating or capturing geographic information from variouscss in digital

form or for viewing available geographically referenced datdnuman recognizable

formats. Perhaps the simplest example of Geographic Informatisterss is widely
available map viewers which process layers of geospatial data to creataageg.i

Geographic Information Systems are used in a wide varietysib such as urban
planning, resource management, environmental impact assessmageraypeesponse
planning in case of disasters, crisis management and rapid regtongdéthough these
seem to be relatively independent and different areas a comntorefeaalmost all GIS
use cases is the need for the system to relate informaon different sources. For
instance a GIS framework to help planning adequate response iof @asatural disaster
such as a powerful earthquake would require latest information abosirehgth of the
earthquake, detailed images of the affected areas with and ethgildces clearly
marked, the names of these places, population density, usable roads lraadistai
information about the energy and natural gas lines, hospitals, polickuasters,
buildings that can be used for relocating affected people suchhaslsand public
buildings etc. The list can go indefinitely but it gives an idea aboigue characteristics
of the GIS.

The 28" century saw the birth of the GI Systems, and their journey fentralized
mainframe systems to desktop systems and finally to distritaystéms [2]. Today a
modern GIS requires distributed systems support at two levalsfdiraccessing various
geospatial databases to execute spatial queries and seconlizioguemote geographic
analysis, simulation or visualization tools to process spatial data.

In a relatively short period of time the Internet has dramalyicchanged how
scientists, industry specialists and the public access, exclaadgprocess information.

As in most other cases the geospatial data access and desemimethods also

significantly evolved. This helped academia, governments and busineshave easy
access to substantial amount of geospatial data. Today hundredsaifyspaabled web
sites allow users to make spatial queries, create/viewpmiate interactive high-quality
online maps or search and find national or global geographic dataoVeements are
working to establish national spatial data and services infrastescto satisfy ever-
increasing demand from public for more and higher quality gea$piztia. For instance
the Federal Geographic Data Committee under the National Gebdpatgrams Office
is established to promote the coordinated development, use, sharing,sandirtagion of
geospatial data on a national basis. It maintains the Nationa&lSpata Infrastructure
(NSDI) Clearinghouse Network which‘ia community of distributed data providers who
publish collections of metadata that describe their map and data resour¢es thigir
areas of responsibility, documenting data quality, characteristics, and aoitiégsi[3].
Similar clearinghouses or data warehouses have been created by othel$4ds wel
Although the advances in internet and distributed computing provided ezessac
to distributed data products several issues still need to be résdlkese issues also

constitute the motivations of our research and explained in the next section.

1.1 Motivation

1.1.1Problems with the Traditional GIS Approaches

The desktop GIS applications conventionally used to access and ama&lgizddta
do not have the ability to interact with online data sources amdother spatial analysis
applications. To be able to interact with online geospatial ressuthe traditional
Desktop GIS programs are evolving into distributed applications, cdrtgatith

3

various distributed systems architectures. As a result ckeneisbased distributed GIS
applications have been introduced to fill the gap, and the GIS compaiegsearch

groups have developed their own spatial databases along with vaaiBuaatess and
manipulation tools.

However because of the proprietary design of these applicati@mepatability at
the application level has always been a significant bottleneckng@nce in addition to
the various types of GIS analysis applications there aresit leree major types of GIS
servers used by different Indiana State counties, and these servers arapaitide with
each other [5]:

— ESRI [6] ArcIMS and ArcMap Server (Marion, Vanderburgh, Hancock,
Kosciusko, Huntington and Tippecanoe counties)

— Autodesk MapGuide [7] (Hamilton, Hendricks, Monroe and Wayne counties)

— WTH Mapserver Web Mapping Application [8] (Fulton, Cass, Daviess atyd C
of Huntingburg counties) based on several Open Source projects.

We also observe the same interoperability problem at the dataTeisis perhaps
due to the aggressive policies GIS companies have embarkedyiryemns of the GIS
development to discourage switching between different suites. aheramerous ways
of describing geospatial data in various formats such as ESRI lead®], ASCII files,
XML files, Geography Markup Language (GML) [10] files etc.|Bwling table gives a

comparison of some of the GIS software file formats:

Table 1-1 — Software File-Format Chart (Source: Ge@€ommunity, [11])

tiff |.tfw headerdxfdemeoashy|.jpdigds/.dgnmifi.dlg.sdtsdtediger

AutoCad
V.13 2 2 1| 3| 1| 1| 1 1 1
V.14 1 2 1| 3| 1| 1| 1 1 1

Cad OverlayGSX | 1 1 1

Caliper Corp.
GIS Plus 1 2 1|1
Maptitude 1 2 11 1| 1 1 1 1
Trancad 1 2 1] 1
ENVI 1 1 3
ERDAS 1 1 1|1
ERMAPPER 1 1 111]1 1 1 1 1
ESRI
ARC/INFO 1 1 11 1| 1] 1 1 1 1 1 1
ArcView 1 1 1| 2 1] 1 1 2
Data Automation Kit 1 1 1 1 1
Geographix 1 1 1
Genasys 1 1 111
GRASS 1 1 111]1
HASP 3 3 1| 3
IDRISI 1 1 1| 3
Intergraph
IRAS C 1 3 3| 3
PowerRas 1 3 3| 3
Vista Map 1 3 3| 3
Landform Gold 1 1 3
Microstation 3
95 1 2 1
Descartes 2 2 3| 3
MapInfo 1 3 1 1)1 1 1
PCl Remote 1 1 111
Terramodel 1 1 1] 1
TNT Mips 1 1 1|1
TOPO+ 1 1 3| 3
\Vertical Mapper 2 3 2| 2
1= Full compatibility
2= Compatible only with third party software
3= Not compatible at all

Therefore, the unique properties of the geospatial data such erenliffesolutions
and scales of the same domain caused data providers to creaentiffays to describe
the same geospatial entity which in turn resulted in numerous incompatibkggorm

We identify several problems with traditional distributed GIS approach:

1 Problems with assembling data: Because of the distributed natgeosgpatial

data, users are required to utilize different tools to acceasrdaairious FTP or

HTTP servers, relational or XML databases etc. In addition tarti@ved data

real-time data providers employ different communication and tatssport
protocols which further complicates the access.

2 Data format problems: Depending on the user’s choice of softapécations
that digest geospatial data require input in different formatersUspend
significant amount of time converting data from one format to othenake it
available for their purpose.

3 Amount of resources for processing data: After the data isctedleand
converted into a usable format, enough hardware and software restegde®
be allocated for analyzing the data. In most cases the amouallefted data
reaches to an amount in the order of gigabytes or even terabatefling this
data becomes a challenge for most users and organizations. Also, simasdtion
visualization software used in conjunction require high performanceutong
platforms which are unreachable for common users.

As a result, today, due to the distributed nature of the geospatial data andettye var

of data and application standards the GIS community faces the followinghgjeslie

1. Adoption of universal standards: Over the years organizations have produced
geospatial data in proprietary formats and developed servicesltering to
differing methodologies;

2. Distributed nature of geospatial data: Because the data scanee@wned and
operated by individual groups or organizations, geospatial data vasity
distributed repositories,

3. Service interoperability: Computational resources used to anglgaspatial

data are also distributed and require the ability to be integrated when ngcessar

Undoubtedly these issues are the focal point of numerous researctvai@pthent
efforts [12] [13]. Especially the problems related to data forrmatsstandards are being
addressed by a number of groups and organizations some of whidffatssolutions to
the application level interoperability issues [14-18]. We summéhnzse standards based
efforts in Chapter 4.

However most of the distributed GIS services approaches are basedore
traditional client-server models and lacks the potential of yedisiking distributed

computational components.

1.1.2Sensors and Real-Time Data Access in GIS

Another very important and relatively less explored issue inpgias world is the
real-time data access and their integration with Geograplioration Systems. Thanks
to the advancements in sensor technology a revolution is slowly tstkapg in terms of
data acquisition in a growing number of fields [19, 20]. Profound effi#ct®ensors in
GIS related sciences such as in environmental monitoring, earthvafise, real-time
pollution monitoring are becoming more and more visible [21-24].

GIS related use of sensors vary to a great extent; they asseden monitoring the
water level of the rivers, or the number of vehicles passing thrbtighges at certain
times of the day, or recording humidity in the air etc [25] [2G]t ®hat is common is
that all of these measurements are used by some GIS frameworki$bicatair practical
purposes. However since the traditional approach of the GIS framevwgoldesed on
accessing and using geographic data from archives or spatibbdas integrating these
sensor measurements with the geo-processing tools is a prablessae, especially in

real-time [27].

There are some recent efforts to present unified interfacesrsors and sensor
measurements such as OGC Sensor Web Enablement [28]. We swemimesi efforts
in Chapter 6. However the GIS community today needs Service Origmpedaches for

coupling real-time sensor measurements with the data analysis tools.

1.2 Research Issues

In this dissertation we investigate the issues pertaining twatigional Geographic
Information Systems approaches and propose solutions to these prdidsets on
modern Service Oriented Grids approaches.

The importance of providing access to computational resources hasdrggl in
many research efforts in Grid community. Another such importang iss distributed
access to data stored in various types of databases. Geogrdptation Systems are
especially affected by the developments in both of these aremsthese systems are
traditionally data-centric; they require access to data fnoamy different sources for
creating layers, and tend to use various types of data procégsiagfor analysis or
visualization of the geographic data.

Distributed data access in GIS is traditionally regarded akndewith distributed
data archives, databases or files. However modern scientificaipphs especially real-
time data processing tools require continuous data streaming. Hégtiata streaming is
also important for applications such as decision making tools that require fastaiss a

We identify two major types of geographic data based on soeirces: real-time
measurements acquired from sensors and archival data stored &h dattbases. The

connection between sensors and Geographic Information Systemsidalgdy strong

because the measurements are most likely to be used bysystems for analysis or
statistical reasons.

This thesis is about developing a Web Services architecturprthatles access to
both types of the geographic data products, manage data sources} toameto the
geo-processing applications and allow users to access them inocoformats. The
thesis implementation encompasses development of GIS data semgteperformance
streaming data services, integrating messaging system with tindgsesecomposition of
GIS services in scientific workflows, real-time data fdteand coupling scientific
geophysical applications with real-time and archival data.

We identify following research questions in the scope of this thesis:

- Can we implement unified data-centric Grid architecture to praodanon

interfaces for accessing real-time and archival geospatiatdatees?

- How can we incorporate widely accepted geospatial industry stinddth

Web Services?
- Are the performance of the Web Services acceptable for r&eluig
Information Systems and how can we make performance improvements?

- How can we build services for supporting scientific GIS appboat that

demand high-performance and high-rate data transfers?

- How can we build a Grid architecture to couple real-time sounads

scientific applications that also provides high interactivity and perforn?ance

- What is the way for managing real-time data filters using Web Sefvice

- Can we organize and manage real-time sensor data products usist-publi
subscribe systems? Are the mechanisms of topic based publishisibscr
systems appropriate?

- Is the performance of the Real-Time Data Grid acceptablerinterrupted,
continuous operation?

- Will the Real-Time Data Grid implementation scale for éangimber of data

providers such as sensors and clients?

1.3 Organization of the Dissertation

This thesis is organized as follows. The first chapter consisia overview of the
Geographic Information Systems, a summary of the outstanding idsaterelate to the
research outlined in this thesis and the research questions. Chagptetaths short
reviews of some of the related projects and motivating geophysigdications. Our
system is an example of the Grids of Grids paradigm [29] wtacisists of two major
architectural components; the first is a Data Grid for asthgeographic data, and the
second is the Real-Time Data Grid for sensors. In Chapiter §ve an overview of the
overall architecture and explain the major components of the system.

Chapter 4 and Chapter 5 present the High Performance GIS DdtarGritecture
for archival geospatial data, and a detailed performance study. In chayezxplain the
design principles of the Data Grid architecture for GIS and gnplementation details.
In this chapter we present our approach for creating GIS Webc8gmmnd methods for
improving the performance of these services. We introduce strgd@®iS Web Services

for high performance and high rate data transfer. In Chapter pregent a detailed

10

performance study of the GIS Data Grid and the streamingss introduced in Chapter
4,

Chapters 6 and 7 introduce the Real-Time GIS Data Grid and ritsrrpance
studies. In Chapter 6 we present a novel Grid architecture whrdists of filter Web
Services, Grid Messaging Substrate and Information Services. artistecture is
designed to provide continuous streaming access to sensor messagaksoVgresent
metadata descriptions for real-time filters and filterimbiaThis chapter presents several
use cases of the Real-Time Data Grid architecture witHinea GPS streams. Chapter 7
presents a detailed performance study of the Real-Time Gath architecture. We
outline several test cases and give performance results. §ikehtdp us determine the
limits of the system in terms of the maximum number of datdymrers and clients that
can be supported.

In Chapter 8 we give answers to the research questions idemtifiétapter 1,

outline future research directions and conclude the dissertation.

11

Chapter 2

Related Work and Motivating Use Cases

While writing about Geographic Information systems one must ackdgeléhe
tremendous amount of work done for more than half a century. Since shdrdie
operational GIS framework “Canadian Geographic Information SYy{{€@lS) was put
in service in 1964, there have been many successful systemepmbal/aind used. Later
the first mainframe GIS examples are replaced by the mmwéular Desktop based
systems working on UNIX workstations and Personal Computers (P@h the
development of sophisticated networking methodologies, access to distribotedec
data and geo-processing applications become much easier. Today kmadety online
mapping applications such as Google Maps, Microsoft Visual Earth,yahoo Maps
provide GIS services to ordinary Internet users.

This research is mainly constructed around the Geophysical Grahreotd it aims

to provide tools for coupling scientific geophysical applications sucRRAHMM,

12

Pattern Informatics etc with real-time and archived gguwycadata. The research is
divided into two major parts; the first part is about issuegeelto creating a Service
Oriented Architecture for geographic data, proposed improvementseactimarks, and
the second part is defining principles and developing a prototype immuigioa for
supporting sensors and real-time data in Grid environments. Theallagparation of
geo-referenced data helps us clearly define the boundaries okdkarch and the
requirements for the two distinct Grids we build.

In this chapter we summarize several well-known projects icdghenunity, which
are also closely related to our work. However it should be noted: tisatat possible to
mention all related projects here because of the sheer numierlotione or currently
being researched. Also it should be noted that the term GISsrétatmany different
scientific fields, but we are only interested in Information hfedogy aspects of it.
Additionally we summarize some of the scientific applicationsciwhmotivated this

research.

2.1 Related Projects

2.1.1Linked Environments for Atmospheric Discovery

(LEAD)

Linked Environments for Atmospheric Discovery (LEAD) is a &asggale project
funded by NSF Large Information Technology Research grant for aiuyes
fundamental IT and meteorology research challenges to creattegrated framework

for analyzing and predicting the atmosphere. The proposed frameworkréstaschers

13

to identify and access, prepare, manage, analyze or visualibeoad array of
meteorological data and model output independent of format and physical location [30].

For adaptive utilization of distributed resources, sensors and woskil&®AD is
developing the middleware. The LEAD system is constructed asneces-oriented
architecture and decomposes into services which communicate uladefweed
interfaces and protocols [31].

LEAD provides the scientists with necessary tools to build &stemodels using
available observations or model generated data and manages rmyecessarces for
executing the model. The tools include supercomputer resources, autoseateh,
selection and transfer of required data products between compugmngaes [32]. One
major feature of LEAD is support for adaptive analysis and prediaif mesoscale
meteorological events. To provide such features LEAD data subsgsteports three
important capabilities: 1 - automated data discovery by replatiagmanual data
management tasks with automated ones, 2 - a highly scalablerdaigng system
which allows transfer of large scale data products between ocespumetadata
descriptions of the available information and protected storageti&s;il8 — easy search
and access interfaces for the data via a search GUI and underlying ontology [32].

LEAD provides a web-portal as the entry point for students, usesasivanced
researchers to the meteorological data, services, models, andowor&halysis and
visualization tools related to the project. Users can interagtesglore the weather as it
evolves, create custom scenarios or acquire and process their own data [33].

An important issue researched by LEAD scientists is adaptw&flew, termed as

Workflow Orchestration for On-Demand, Real-Time, Dynamicallyptidga Systems

14

(WOORDS). This approach allows use of tools such as analysigisaalization

applications, models or data repositories as dynamically adamm«demand Grid
enabled systems instead of static data consumers with fixeduwations. The dynamic
nature of the system allows a workflow configuration to be changeesponse to
weather, respond to user decisions, initiate other processes arattiméh remote
observing technologies to optimize data collection for current proljih The

workflow tools provided by LEAD automates many of the otherwise ttonsuming and
complicated tasks by linking data management, assimilation afstreg, and verification

applications into a single experiment [LEAD Portal].

2.1.20PeNDAP

Open-source Project for a Network Data Access Protocol (ORENDs a
framework that aims to simplify all aspects of scientifietworking. OPeNDAP or
formerly known as DODS (Distributed Oceanographic Data Systdlows access to
scientific data over the internet from applications that werespetifically designed for
that purpose. There are also some applications designed to commuwuitica®d®eNDAP
servers. To access data OPeNDAP provides a URL, howeveriaveetine data using
the provided URL users need to know the type of the data and how totraqBys
default OPeNDAP data is stored and transmitted in binary forfratprovide some
information about the data OPeNDAP provideataset Descriptor Structur@®DS).
DDS is OPeNDAP’s version of metadata in a C-like syntaxrdJsan access the DDS of

a particular data set by appending .dds to the URL [35]

15

Distributed Oceanographic Data System or DODS was origimatiated in early
1990's as a system that would facilitate scientific data exgddetween researches,
archives, industry specialists etc [36]. Two fundamental desitgriarwas 1) servers
must be easy to install. And 2) the system must be compatilii¢heitexisting software.
Built to satisfy these criteria today OPeNDAP is one of the major toets especially by
ocean scientists to share data across globe. The key futuree D@P is that it allows
access to data from a wide variety of programs includingiegistpplications, and it
provides network versions of Application Program Interface (APbaties for most
commonly used data formats such as NetCDF, HDF, JGOFS and saberal Thus it

allows users to continue to use their applications with OPeNDAP support.

The OPeNDAP architecture uses the World Wide Web model, or ithe/skrver
model, where the browsers submit requests to the servers asdriiees respond with
the data that make up the web pages. In addition to the requestirfgpdathe servers
OPeNDAP allows clients to browse data, request data to beatethsind delivered in
some particular format, request specific part of the datafdso OPeNDAP allows
researchers to convert their data analysis programs suchaabMFerret, IDL into

specialized web browsers.

How an OPeNDAP server and client communicate with each atheefined by
OPeNDAP protocol which consists of four components: 1- A data model tosed
transport data from one source to another, 2- A Data Descriptat @t (DDS) which

describes the data structures to be filled by the accompadgiag 3- A procedure for

16

retrieving data and the DDS from the remote source, 4- An ARmptement this

protocol [36].

The advantages of using OPeNDAP to share data over the web imeds

follows [37]:

1. OPeNDAP server and client cooperate to deliver the data in thieupar
format in which the analysis application expects, so the user nedeanot
about various archival formats.

2. OPeNDAP allows users to sample the datasets in the fosupg®rted by
his/her analysis package, thus unnecessary data exchange over tlet istern
prevented.

3. Most of the search and sampling is performed on the server maaetiineh

reduce the Internet traffic and decrease the load on the local machine.

The interaction between an OPeNDAP client and a server canntraasized in
four steps: User sends a request to the OPeNDAP server vig,UlRLURL is passed to
the HTTP server via an OPeNDAP client, the data are retwreedTTP and the
OPeNDAP client reformats the received data for user'ysisgpackage. There are three

basic data object types provided by OPeNDAP:

1. Data Descriptor Structure (DDS), which describes the structutiee data
set and provides syntactic metadata,
2. Data Attribute Structure (DAS) semantic metadata which gives tifieuses

values of the fields described in the DDS,

17

3. The data (DODS data), the actual data in a binary structure.

Major advantages of OPeNDAP over conventional file transfer prataath as
FTP are its ability to sample data, or request only subsetlataf and the ability to

aggregate data from several remote resources in one transfer operation.

2.1.3ROADNet

The Real-time Observatories, Applications, and Data managemeiwtorike

(ROADNEet) ttp://roadnet.ucsd.edluis a large scale project involving several different

types of scientific research areas and communities. ROAD&&sarch focuses on
resolving challenges related to building wireless sensor networksgafious types of
observations and the information management system which will dehige sensor
observation in real-time to the users.

The goal of creating sensor networks to measure various gmgitte enhance our
capacity to monitor and respond to changes in our environment. ROARMNetts
seismic, oceanographic, hydrological, ecological and physidal a@lad streams to a
variety of end users in real-time [38].

ROADNet utilizes Object Ring Buffers (ORB) to capture real-taata from sensor
networks [39]. ORBs capture data from the sensors and store themmiediate use as
well as archive them for further analysis. ORB allows users to @.deg¢a through a well-
defined API and provides metadata about the raw sensor observations.

To enhance the capabilities of the ORB for real-time dathange and dynamic
reconfiguration ROADNet team has developed Virtual Object RindeBifor Virtual

ORBs (VORB) [40]. VORB provides transparency and independence frerphysical

18

ORB implementation which can be useful in federated sensor netiwwikst as data

exchange points or in developing test beds for virtual sensor networks [39].

Reserve System (NRS)

£ R/V Khorr

<L
=
(@]
s
w
5
<L
)
Az

Figure 2-1 Current ROADNet Sensor map (image takefrom http://roadnet.ucsd.edu/index.htm)
shows several different types of sensors being ugitd.

ROADNet research spans following scientific areas (source:
http://roadnet.ucsd.edu/field_research.html):

Ecology. By employing a multiplicity of sensors to monitor environmental
conditions such as physical, chemical and biological variables.

Geodesy GPS stations are used for high-resolution, high-rate, precisdoposi
measurements. The GPS streams are made available throughktimteich can be used
by surveyors to obtain real-time three-dimensional position fx#s high-level vertical

and horizontal precision.

19

Hydrology: Sensors are used to monitor mountainous watersheds, precipitation,
runoff, and weather and water quality. ROADNet is proposing to buikiate sensor
network to continuously monitor hydrological and meteorological conditbtize water
resources.

Oceanography Implementing continuous real-time data delivery helps
observational oceanography at several levels, such as understandimgodeling the
ocean and underlying crust and mantle using real-time and pastalata necessary
steps in any emergency situations, or in educational, recreational or bynirssses.

Seismology ROADNet provides Virtual Seismic Network (VSN) for igtating
real-time data from multiple disparate seismic networks. @Gtiyre550 globally

distributed stations are accessible through internet.

2.2 Data Stream Processing and Management

One of the major parts of our research is about processingmeasé¢énsor streams
on-the fly. To achieve this goal we have developed real-timeldisdd data processing
filters extended from a generic filter class and deplopedntaround publish-subscribe
system. In 6.2 we describe our approach to create filter cHainsnore complex
processing and real-time data analysis. We use distributedsdtvices and filter chains
to process the data streams on-the-fly. In this section we sumensame of the related
work about issues pertaining to stream processing and management.

The Active Streams is a middleware approach and its assbdratmework for
building distributed applications and services [41]. In the ActiveaBtsecontext the

distributed systems have three components: applications, servicestarstre@ms. The

20

data streams are sequences of self-describing data unitsglbeiween components and
services. The data streams are made active by attachingpfheinits calledstreamlets
Streamlets are self-contained units that operate on incomirgnstr@nd generate records
placed onto outgoing streams. Streamlets are created using Evbumteis a subset of
general procedural language, and they can be obtained from streapdsitories. A
coarse form of dynamic adaptation is obtained by attachment/dedatloinstreamlets
that work on data streams. Finer grain adaptation involves fine-tunisigeamlet’s
behavior via parameters, and by re-deploying streamlets tddwesage dynamically-
changing available resources over the data path [42]. Activansgresamework relies on
Echo [43] a high-performance event-delivery middleware designedate &x the data
rates typically found in grid environments.

Echo which is developed at Georgia Tech aims to address regnisenfehigh-
performance event-based communication in distributed systems. Edwvidesr
maximum bandwidth to the applications by allowing receivers tooouze delivery
through derived event channels, which are mechanism that can openatwark
transmission speeds [43]. Related to our research is Echofmfjliend transformation
ability. To support specific customizations on the event strearne povides derived
event channels which bears some similarities to content-basea@techgased filtering.
Additionally Echo supports dynamic code generation (DGC) which allgerseral
computations on the streams. By using a derivation function applisateom create a
new channel which is derived from an existing channel. This allowgtom filter

execution on the stream and eliminates unwanted event traffic [43].

21

Adapting Computational Data Streams (ACDS) system which ig¢ bniltop of
Echo is a system for implementing adaptive computational data streams (A% &ms
to address the high-performance requirements for creation and meerdage the large-
scale data streams put forward by the distributed saeapplications. The streams are
sequence of data events, generated either in response to réguestensumers or by
the producers. ACDS supports migration, specialization, splitting andimg of these
stream computations. Some of the capabilities provided by ACDS saeam
parallelization, runtime filtering adaptation, and runtime migratan the stream
components. ACDS provides capabilities for parallelization of tteais computations
since in some cases the stream computations themselvesngpatationally intensive.
This motivates ‘split’ and ‘merge’ adaptations in ACDS. Runtiagaptation of the
parameters for single or sets of stream components allow itetang at runtime.
Runtime migration of the stream components allows ACDS to dedl dynamic
variations in the node and network loads [44].

Managing and processing data streams in distributed systencgratral in several
research efforts. One such example is dQUOB: dynamic QuggctOsystem [45, 46].
dQUOB provides mechanisms to reduce end-to-end latency of the facieata by
forwarding only the useful data. This requires ability to continuoustyqueries on the
data stream to strip the unnecessary parts for a specific pudépd©B enables users to
create SQL-like queries and attach them into runtime componeldd gabblets These
components may then be dynamically embedded into the stream&ast\@oints which
also provide distributed filtering capabilities [45]. By adopting diJscientists may

potentially eliminate large amount of data processing and trandfe [47] authors

22

explain that although the queries over data streams is a useftdctbga, they had
discovered that the transformation power of the rules can be edhbyoceoupling a
query and a complex, user-defined function which is triggered whergubey is
evaluated to true. This approach can be thought of a custom filted basa rule which
is created by the user.

dQUOB uses dQUOBEC, a publish-subscribe system implemented a$ eve
channels [46]. dQUOBEC is a lightweight and efficient systemtriinsferring binary
data as streams. It is a subject based publish-subscribe systefollows a push-based
streaming model, and also supports peer-to-peer architecture. dQU@EE@ortable
Binary Input Output (PBIO) [48] for binary data transfer. dQUOBEGIso used by
Calder, a stream processing engine, which aims to provide tawebss to data streams
[49]. Architecture and experimental evaluation of Calder is discussed in [49, 50].

Data streams such as those obtained from the sensors and thejemeanitare
discussed in various publications. Golab and Ozsu in [51] discuss the issdata
stream management and challenges related to executing sqoeristreaming data.
Telegraphcq [52, 53], Eddies [54] and Calder [50] are a few exangbl&dream
Processing Engines (SPE’s) designed to process data floj#$] IBabcock et al explain
the differences between the traditional Database Managemsten®y(DBMS) and the
continuous data streams. They also give a list of the datanstreaagement projects
and propose STREAM (STanford stREam datA Manager) a data stresragement
system (DSMS). In [56] and [57] Plale explains how distributed ¢kriegpshots can be
used to access streams and proposes a framework based on thishdeg the data

streams to the Grid.

23

2.3 Motivating Use Cases

2.3.1RDAHMM

Regularized Deterministic Annealing Hidden Markov Model (RDAHMM)an
implementation of regularized deterministic annealing expectaiaximization
algorithm (RDAEM) [58] for fitting hidden Markov Models (HMMs59] to time-series
data. Fitting an HMM to a time-series allows us to descthe statistics of the data in a
simple way that ascribes discrete modes of behavior to the system.

What is different in RDAEM than standard HMM time serigsny methods such
as those used in speech analysis, is that it does not requirei &mpowtedge about the
data. This property of RDAEM allows its use in data collectechfpoorly understood

systems and quick adoption to new problem domains.

24

Figure 2-2 — RDAHMM output plots for time series dda collected for two years between 1998 and
2000 from GPS station CLAR which is located in theity of Claremont, California. The graphics
display the displacement time series segmentatioarfnorth, east and up coordinates. This figure is
taken from [60].

RDAHMM has successfully been applied to geodetic time serieSouthern
California such as daily displacement time series collebtethe Southern California
Integrated Geodetic Network (SCIGN). To analyze the GR8 feries data the HMMs
are first trained using a data set deterministic of theahd¢ime series. The algorithms
segment the series based on statistical changes as idelyifted trained HMMs. The
identified segments correspond to state changes or different bethaviodes in the
series. The correlations in the state changes across mgligpiens at a given point of

time indicate region-wide activity. The application of thisoaiipm has shown that it can

25

detect seismic events across a region as well as sapsisiated with aseismic events or
long-range interactions between smaller events [61].

Figure 2-2 is an example plot of RDAHMM output given in [60]. Tiyeife shows
that the states before and after the Hector Mine quake of Ocl®®& are clearly
separated, and distinct in turn from a period in 1998 in which well groatel wrainage
caused displacement in the vertical direction is also identified.

Another HMM plot example is given in Figure 2-3 for the sameetiperiod.
Results show that the algorithm identified the dip due to the acginénage between

days 120-250 and the Hector Mine earthquake at day 626.

Figure 2-3 — RDAHMM output plots for 800-day long G°S time series data. Figure courtesy of
Robert Granat, JPL

From the point of view of our research RDAHMM is a geophysical iegpbn
which requires geographic data as input to produce a set of outputinput data is

usually archived GPS observations made available through files on FTP or HV@R se

26

We aim to provide a fully automatic integration of RDAHMM wittetdata sources with
ability to select single or multiple station analysis.

Another interesting research challenge we address in tharchsis that although
RDAHMM has traditionally been used to analyze archival GPS olismmgave can also
use it to analyze near-real time observations. Our architeptokedes easy access to
real-time GPS observations of Southern California Integrated GPS Re¢i8©IGN) and
we have integrated RDAHMM with our data services to analyzereéhktime data.

Details of this integration are explained in Chapter 6.

2.3.2Pattern Informatics

As reported in [62] there have been two major types of approachésdoasting
earthquakes. The first approach is based on empirical observagwacofsory changes
such as seismic activity, ground motions and others. The second apzcaatistical
patterns of Seismicity. The hypothesis behind these approaches ithe earthquakes
will occur in regions where typically large earthquakes havwiroed in the past. The
Pattern Informatics (PI) [63-66] approach suggests that a more promisingdpiar dlais
hypothesis is that the rate of the occurrence of small earthquakeparticular region
can be analyzed to assess the probability of much larger earthquakes [62].

The Pl method uses observational data to identify the existho®rrelated
regions of seismicity. The method does not predict earthquakes fatkeasts the
regions or so-called hotspots where earthquakes are most likedguoin the relatively

near future [62].

27

Figure 2-4 — PI forecast map or hotspot scorecarchews the results of a forecast experiment for
California. The time period of this experiment is &nuary 1 2000 — December 31 2009. The green
triangles represent the earthquakes occurred betw@el990 and 1999, while the blue circles are the
large seismic events occurred after 2000. The scoed indicates that 16 of these 19 significant
earthquakes occurred after the work was first publshed in February 19, 2002. The figure is taken
from QuakeSim Website http://quakesim.jpl.nasa.gov/scorecard.html

The PI technique quantifies the temporal variations in seignuaiterns to identify
geographic regions with strongly correlated seismic activities.elteggons are shown to
be the locations for subsequent large earthquakes. The resultalg ahith shows the
fluctuations in seismic activity which are found to be relatedhéoptreparation steps for
large earthquakes. In other words the Pl map shows regions with Botspete
earthquakes are likely to occur during a specified period ifiutinee [62]. An example

Pl map is shown in Figure 2-4.

28

The PI method has been applied to existing seismic observationietadt future
seismic hotspots in various regions such as Southern Californisgylrarkl Japan [67].
The fact that the Pl uses publicly available seismic redorftsrecast future earthquakes
makes it an ideal candidate for our research because our gysteaes access to both
real-time and non-real time geophysical records. We have hedvglstbal and Southern
California specific seismic records off the internet andteckaervices to access these
data. By using these services we were able to integratgtiflour architecture. This
integration is reported in Chapter 4. Sayar et al [68] reportsethéts of integration of

Pl, our GIS data services and GIS visualization Web Services [69].

2.3.3Interdependent Energy Infrastructure Simulation sygem

(IEISS)

The National Infrastructure Simulation and Analysis Center (MBAt Los
Alamos National Laboratory (LANL) develops advanced modeling andlaiion tools
for analysis of the critical infrastructure. These tool®wallauthorities to understand
interdependencies, vulnerabilities, and complexities of the infrasteucand help
develop policies, investment plans, education and training etc for crisis situgti@jns
One such suite of analysis software is the Interdependent Enef@gstructure
Simulation System (IEISS) developed at LANL with the collaboratof Argonne
National Laboratory (ANL). The goal of IEISS is to provide a cahpnsive simulation
of national energy infrastructures and intra- and inter-infrastructure depaad [70].

During our research we have worked with NISAC to develop a Se@isnted

Architecture for IEISS suite. Traditionally IEISS is run aslesktop application with

29

input data supplied as XML files collected from various sources,lencesult is locally
generated. We have used our Web Services to provide the required itgprodaour
geospatial databases. Additionally our map interfaces allowsersuto select
geographical regions on the maps where the simulation is exechiedniegration is

detailed in Chapter 4.

Figure 2-5 — IEISS screen capture shows various emgyy infrastructures and interdependencies
between them in three-dimensional visualization. Té infrastructures starting from the top layer are
network of crude oil pipelines, petroleum product ppelines, electric power transmission lines and
natural gas pipelines. The figure is taken from [7]L

30

Chapter 3

GIS Data Grid Architecture

3.1 Overview of the System

The Grid architecture we have developed for Geographic Inform3iistems is a
high performance, Service Oriented Architecture [72] to support caguphchived and
real-time geospatial data with scientific applications swcBimulation, visualization or
data mining software.

GIS applications that require access to and processing of vgey data sets are
increasing in number with the evolution of computing resources, netwodwidth, and
storage capabilities etc. At the same time some of the appfis are being designed to
consume real-time data to provide near-real time analysidtse such applications are
gaining ground in systems like Crisis Management or EarlynigrSystems because
they allow authorities to take action on time. Earth observation ardgaake data

assimilation tools are good examples of this group since thegataefrom Seismic or

31

GPS sensors which continuously collect data. However most of tbelsecurrently
consume data from repositories and either they do not have acaesd-time data or
they do not have the capability to analyze data on the fly.

We utilize GIS standards and Web Services methodologies to coume dat
assimilation tools with real-time and archived geospatial date 3$ystem uses
publish/subscribe [73] based messaging substrate to provide high p@&derrdata
transfer between data sources and the client applications. Bta@ti interfaces and
encodings like Geography Markup Language (GML) [10], GML-Obsems and
Measurements (OM) [74] and Sensor Markup Language (SensorML)a[lts) data
products to be available to the larger GIS community. The aralméestipports seamless
access to both archival and real-time geospatial data through staddr Services
interfaces. Although the issues related to online and offline gelmgraata differ, our
architecture provides a common platform for suppliers to make daga sets available
without much effort and easy to use tools for users to access this data.

Geographical data can be classified in two major categodesrding to their
sources: Online or real-time measurements collected from semsoffline or archived
records.

Archival geospatial data has been in the core of almost eveBy&ém since the
first example. Long history of mapping, topography and relatedhtdfateactivities has
created huge spatial repositories and with the development of cogpesources
numerous instances of software were produced to consume and arayeedata.
Because of the need to create universal data and service dtarfdarthe GIS

community, recent years have brought about very intensive reseathls idirection.

32

This research has yield to very successful outcomes and the d&pdzaituced are being
adopted in every part of the world. In addition to the standards develogmantdrnet
revolution helped geospatial data to be used and integrated into vergediveb based
developments. Every day we see new examples of web sites @fegass to some form
of geographic data. Online mapping tools, driving direction tools, kioa¢ors are just a
few examples. Web GIS, Internet GIS or Distributed GIS areesointhe terms used to
describe these online GIS related activities [2].

Although there is enormous demand to utilize the spatial data ontick of the
research in this area has been about developing data forms¢rarmk standards. While
the GISystems are migrating from the traditional stand aloskta® applications or
LAN based desktop GIS to distributed systems [2] there is an obwasclsof thrust
towards service based approaches. The distributed Gl servicewstlg developed as
traditional, well known client/server architectures such as Javalets. In this chapter
we describe our approach which not only adopts the latest industry refsrild also

conforms to Service Oriented Architecture principles.

3.2 Major Components of the Architecture

Taking into account the two types of the geospatial data, our atohg@onsists of
two major parts:

1 - GIS Data Grid for providing unified access to archived,@@fljeographic data
stored in various distributed databases,

2 — Real-Time Data Services to provide access to online, neal-Sensor

measurements, or streaming observations collected from various sources.

33

Each of these parts consists of several Web Services andtsbptray provide
access to different types of data hence they can be thought of ndeepeGrid
architectures. Therefore the complete SensorGrid architestame example of the Grid
of Grids [29] paradigm.

We discuss the details of these parts in the consecutive chdmezswe give a
short overview of the architecture and the service components.

The most important component of the Archival Data Grid is the WedduFe
Service [15]. Web Feature Service (WFS) is an Open Geospatisb@ium [76] service
for sharing vector geographic data on the web. Details of thisceeave discussed in
Chapter 4, here we only discuss how it is used in the overall atcingde The WFS
accesses various geospatial databases to retrieve and phesdata to the users in a
standard format. However because the specification descrid&€$R GET/POST based
service we have extended it by implementing a Web Serviceomasdiich allowed us to
integrate several installations of this service and other Wehc8g to create Grids for
particular purposes. For instance a Web Map Service [14] can betaugedvide an
interface to the WFS and allow users to interact with itoviltne maps. Reference [68]
demonstrates one such example.

Although the first Web Service version of the WFES was successfully used ialsever
GIS Grid projects, for several reasons explained in Chapter 4 aredHave created a
streaming version, which uses a publish/subscribe system to dfsganto the clients.
This method allows the WFS to serve arbitrarily large amougeofiraphic data in high

rates [77].

34

Therefore our archival GIS Grid architecture has two majoed of data services,
streaming and non-streaming WFSs. Users may choose to use aofytbese services
depending on the capabilities implemented on the client side. The ramsig WFS is
a traditional Web Service which does not require any additionabiiijea on the client
side, however to use the streaming version the clients need temsemng streaming
publish/subscribe API. Furthermore our services have additional cépabifor
performance improvements such as Binary XML framework integréor shrinking the
guery results in XML. To use these capabilities the clientsl he have appropriate API
implementations. However existence of these capabilities dogeenant Web Service
clients from using the basic WFSs since they can serve théisrés simple XML
Schema types.

The second part of the overall architecture is the Real-Tinta Baid which
consists of Real-Time Filter services and publish/subscribesagesg system. We
explain the details of this architecture in Chapter 6. The Rea Filter Services are
data processing or analysis applications exposed as Web Seamttesnnected with
each other via publish/subscribe messaging substrate. Reahtissages collected from
sensors are processed using these services. Filters ally wsunnected as chains to
realize complex tasks. The fact that they use a topic basedshpabbscribe system
provides us an important ability to access original and processadpdaducts via
different topics. This method allows creation of many differgmpes of chains for
various tasks. The system provides continuous access to sensor $trelange number

of clients. In fact because we can create publish/subscribe mkstii@re is no limit on

35

the number of sensors or clients the system can support. Chaptees/ dgitailed

performance evaluation of the Real-Time Data Grid architecture.

Figure 3-1 - SensorGrid Architecture consists of athival and real-time services. A publish/subscribe

messaging system is used to stream large archivaitd and real-time sensor messages to the clients.

Figure 3-1 illustrates the overall SensorGrid architectuitd oth archival and
real-time data services. The major components in the systelWVebieFeature Service,
Streaming-Web Feature Service, Real-Time Filter Servitaslish/Subscribe Messaging
System and Registry Service.

All services in the system have traditional Web Service endpoint$SDL [78]
URLs. To provide easy access and search capabilities for the activesén the system

we use a UDDI service as services registry. The UDDIemphtation we use in this

36

architecture is a specialized implementation of the UD[cgjgation [79] which has

GIS specific extensions. This UDDI registry service ist gd a larger Information
Services project developed in Community Grids Lab [80], more information can be found
in [81-86].

Each service in the system publish its WSDL URL to the UDD] registry at the
time of initialization. The registry service URL is supplienl the services before
initialization. The registry service also provides search cpadj which is useful for
discovering particular GIS capabilities by the users. Fornosta user may want to see
WES instances which have access to data for a particudgragghic region, or sensors
physically located in a particular region. We also have aidt8Race (Client Proxy) that
displays the available services and sensors in the registrynakds use of UDDI
service’s search capabilities for the user. Using this aterthe clients can view the
capabilities of each service, available geographic featuregeahtime sensors or filter
services. The Client Proxy also provides the required informatiorhdoclient for
receiving streaming real-time messages.

To summarize the architecture we go back to Figure 3-1:

The dotted lines represent one time access to the UDDtryelgisother services
to register their WSDL URLSs at the time of initializatidrhe streaming and non-
streaming WFSs access to GIS databases using JDBC connetYenase
several MySQL [87] databases for this purpose.

The WFS communicates with the Client as a traditional Web @&emaquest and
response SOAP messages are transported over HTTP. The str¥dR8ngs

accessed via HTTP, and the request messages are submitiedcomventional

37

Web Service way, however it does not return the results over Hathér itilizes

the publish/subscribe system to stream the results.

On the real-time data grid side we have several filter ggswhich communicate
through the publish/subscribe system. Usually these filters are atednas

chains as depicted in the figure. The standards WSDL interfacesder
capabilities such as starting, stopping or resuming ther fofgeration and

providing metadata about filter.

The real-time data sources are integrated into the archigdbiwugh the pub/sub
system. Typically sensor messages are collected through a sgoser and then
disseminated for use, in such cases we use a filter to coornbet proxy servers
and receive messages to publish to a topic on the messagingtsubate then

deploy subsequent filters around the messaging substrate to ptioesssraw

sensor messages. In the pictures the sensors are representeddss as an

example we use GPS networks for representing the sensor networks.

3.3 Summary

In this chapter we have given an overview of our Data Gridhifecture for Geographic
Information Systems. The architecture consists of two majois gamtresponding to
archival and real-time geospatial data. We adopt open geographdersia for data and
service interfaces and Web Service standards for implemeh#ndata services which
allows us to create and manage scientific workflows for comghdéx analysis cases. We

also summarize a novel approach for processing the real-timer sessages. This

38

approach is based on using filters as Web Services and creaing ohfilters for more

complex analysis cases.

39

Chapter 4

Grid Architecture for Archival GIS Data

4.1 Introduction

In this chapter we discuss our approach to build a Service Oriantbdecture for
archival geographic data and give detailed descriptions of the eedéveloped as part
of this architecture.

To build a GIS Data Grid we adopt the most common industry stanfiards
geospatial data descriptions which allow our data products to bakdeaio the larger
GIS community, and our services to be compatible with others. Theat@hdecture we
built composes of several Web Services for managing, accessidg providing
geospatial data. The data service components can access and sfubuteti geospatial
databases, and make the data available to the users in the comnednfgrosats. This
approach ensures interoperability on service type, and the data ftavets. Web
Services approach allows our GIS data services to be used in cammuwith other

services using workflow management tools. These additional servitay include

40

mapping, or visualization services to illustrate the data in grapliicmats. In this

chapter we discuss some examples of this approach.

4.2 Data Grids for Geographic Information Systems

GIS applications developed by various vendors and academic iosttutave
become more complex as they are required to process largesatafautilize more
computing power and in some cases need to collect data from distrivoteces.
Traditionally GIS applications are data centric: they dedh archived data. However,
with sensor-based applications gaining momentum the need of imggral-time data
sources such as sensors, radars, or satellites with high epdtemplatforms such as
simulation, visualization or data mining applications introduceseraevimportant
distributed computing challenges to GIS community.

Although commercial GIS applications provide various solutions to theséems,
most of the solutions are based on more traditional distributed compatiadigms such
as static server-client approaches. Traditional point to pomianication approaches
tend to result in more centralized, tightly coupled and synchronousatpphs which
results in harder management practices for large scalensystModern large scale
systems on the other hand require more flexible asynchronous comtimminadels to
cope with the high number of participants and transfer of larger data setsrbdteme

As in other distributed computing domains the trend in distributed Gh$isng
towards component based applications [2]. This is due to the fathéhareviously used
distributed GIS technologies such as CORBA/IIOP and COM+/ActiveX typedworks

were not able to address the major interoperability issuebough these are very

41

successful frameworks, their use are constrained with proprigiany applications and
specific types of middle tier servers. For instance a typlsatibuted GIS architecture
involves three tiers [2]; a Client Tier which contains a Java &ppl Middle Tier which

contains a CORBA/Application server and a Server Tier which cen&aGIS Server or
a Database. In this type of architecture the client has tawsee of the CORBA
programming techniques to communicate with the middle tier application server.

A complete GIS architecture contains three major types ofcgecomponents:
presentation, logic and data. For instance, consider an online mappinaémmplihere
the web server is responsible for the presentation by displayengnap images. The
underlying logic engine which creates the map image cantber @n the client side
(thick client), or on another server. The engine usually commusiedata a geospatial
database, which contains the map data. As we can see, even thessiype GIS
application has several distributed components and interoperabilityedretihese
components must be realized. When we think about the bigger picture hmeheads,
even thousands of data repositories, data analysis and visualizatiocaetapgd are

available, we realize the need for GIS standards to make interoperabifitiylpos

4.2.1\Web Services

However it is also obvious that the diversity of the GIS appbtoatiand data
sources is a great challenge. That is where a new breestiabuted systems approach
may help: the Web Services. “A Web Service is an interfaaiedescribes a collection of
operations that are network accessible through standardized XMsagieg.” [88]. In
practice the interface, operations and the XML messaging amastized. The

important thing about the service interface is that it hidesntipdementation logic from

42

the users, which allows the service to be used on different phstfbran which it was
implemented. Also any application capable of communicating thrdwegbktandard XML

messaging protocol and regardless of with which programming lgagita was

developed in can use the service through the standard interface.propsgies allow
Web Services based frameworks to be loosely coupled and component oBectatse

of the standard interfaces and messaging protocols the Web eSepaa easily be
assembled to solve more complex problems.

One significant aspect of the Web Services is that they gdtogram-to-program
communications. With the help of several Web Services specificaiaamplete cycle
of describing, publishing, and finding services can be made possibleneis
specifications are being developed and the industry matures tleensiydegration that
includes these steps will eventually happen dynamically in runtime.

The major difference between the Web services and the other campone
technologies is that, the Web services are accessed via the almsdideb protocols such
as Hypertext Transfer Protocol (HTTP) and Extensible Markuglage (XML) instead
of object-model-specific protocols such as Distributed Component Objecel
(DCOM) [89] or Remote Method Invocation (RMI) [90] or Internet In@b Protocol
(IOP) [91].

Obviously the capabilities offered by the Web Services can loggeait benefit to
the geo-science community as well. Because the possibilitycessing various types of
geospatial data sources and applications using standard servidacegemay help
solving the interoperability issues the GIS community has longreaff But what kinds

of standards are really required for service components and databaseseoperable?

43

According to Kirtland [91] the Web Service specifications and teolgies address
following requirements for service-based technologies:

A standard way to represent data

A common, extensible, message format

A common, extensible, service description language

A way to discover services located on a particular Web site

A way to discover service providers

Currently there are several universally used standards to addhese

requirements: XML is the common choice for representing thevdaita Simple Object
Access Protocol (SOAP) [92] is universally being used for infaionaxchange. SOAP
provides rules for describing how to use XML to represent dataelisag/ conventions
for representing remote procedure calls (RPCs) and bindings kTthe protocol. Web
Service Definition Language (WSDL) [78] is used to describe W of message a
Web Service accepts and generates. Available protocols sucklaS#&wices Dynamic
Discovery can be used to locate services. Universal Descriptigto\vry, and
Integration (UDDI) specification [79] can be used by the serviogigers to advertise

the existence of their services.

4.2.20pen Geographic Standards

From the GIS perspective the problems being addressed by theSeéveices are
also being discussed by the geo-scientists. In recent yeanslsekganizations have

started developing standards to address interoperability issudatarand application

44

levels. The standard bodies aim to make the geographic informatioeraiwes neutral
and available across any network, application, or platform.

Currently the two major geospatial standards organization®i@®pgen Geospatial
Consortium (OGC) and the Technical Committee tasked by then&titenal Standards
Organization (ISO/TC211). The OGC is an international industry ctasoiof more
than 270 companies, government agencies and universities participaingponsensus
process to develop publicly available interface specificationsC C&pecifications
support interoperable solutions that "geo-enable” the Web, wiralesdocation-based
services, and mainstream IT. OGC has produced many specifickttonsb based GIS
applications such as Web Feature Service [15] and the Web Mage&S8nMS) [14].
Geography Markup Language (GML) [10] is widely accepted asitineersal encoding
for geo-referenced data. The OGC is also defining the Sens¢mdL family of
specifications for describing properties of sensors and sensoeltainsts and sensor
observations. On the other hand ISO Standards proposes a standard frafoewark
description and management of geographic information and geographic imdorma
services. ISO/TC 211 did not specify the actual implementationifispdons for
different platforms and the private software vendors. InsteadTIS@11 defines a high-
level data model for the public sector, such as governments, [feafgracies, and
professional organizations [2]. The scope ISO/TC 211 is describkdl@sing on the
working group’s web page [93]:

Scope: Standardization in the field of digital geographic information.

45

This work aims to establish a structured set of standards for infaymati
concerning objects or phenomena that are directly or indirectly associatedaw
location relative to the Earth.

These standards may specify, for geographic information, methods, tools and
services for data management (including definition and description), acquiring,
processing, analyzing, accessing, presenting and transferring such data in
digital/electronic form between different users, systems and locations.

The work shall link to appropriate standards for information technology and
data where possible, and provide a framework for the development of sector-
specific applications using geographic data.

In short the OGC is interested in developing both abstract definbio@penGIS
frameworks and technical implementation details of data modelsoaadesser extent
services and the ISO/TC 211 focuses on high-level definition of gealspandards
from an institutional perspective [2].

Both of these major geospatial standard bodies have been formed iariPatil
1997 they have worked independently and produced several often overlappingdstandar
But after 1997 because of the strong demand from the industry theyp&anevorking

closely to align their work to produce compatible standards.

4.2.3Webh Services for GIS

Today major GIS software companies such as ESRI, ERDAS, AskoBed
INTERGRAPH are member of the OGC and participating in ititeroperability
programs, thus helping shape the next generation geospatial detaraiceé standards.

Furthermore we are seeing an increasing number of governmamdalmunicipal

46

contributions at a global level based on OGC standards. Thes®imateasing interest
in the academic community towards OGC standards and specificftiJnF his is also

an indicator of the consensus between the software vendors, governmeats@emia

for an interoperable GIS infrastructure.

Considering the strong background from the industry and backing of st§entis
experts and several research institutions we expect to see dagpdoyment and
acceptance of OGC specifications, both at national and global levahdse reasons we
have used OGC service and data specifications to build a GIS Data Grid.

The OGC specifications can be studied in two groups: data andcese
specifications. The geospatial data issue is a multi dimensiodat@nplex problem.
There are several types of geospatial data: satelliteempagerial images, coverages,
maps, vector data, sensor measurements, raster data etd. JéeviGes are also diverse
applications ranging from the ones making the data availableetertd user to others
doing more complex coordinate transformations and computations. In theecgrn we

discuss the OGC approach to the common data format and services problem.

4.2.4Common Data Format

The OGC has produced many specifications for web based GIS appbcstich as
Web Feature Service (WFS) [15] and the Web Map Service (WMB) The data model
developed by OGC is the Geography Markup Language (GML) [10] asccitrrently
widely accepted as the universal encoding for geo-referenced data.

The first step for building Gl Services is to decide appropréateodings for
describing the data. The importance of the data format lidweifatt that it becomes the

basic building block of the system which in turn determines the t#vieteroperability.

a7

Use of a universal standard like XML greatly increases the numbeaisers from
different backgrounds and platforms who can easily incorporate ¢arpdaducts into
their systems. Furthermore, services and applications aretdyéirse, understand and
use this format to support various operations on data. So in a sense the type and variety of
the tools being used in the development and data assimilation ggsadspend on the
format initially agreed.

For these reasons we use Geography Markup Language (GM&9manonly
accepted XML based encoding for geospatial data, as our data formatGl Services.
One important fact about GML is that, although it offers partrcatanplex types for
various geospatial phenomena, users can employ a variety ofStkéma development
techniques to describe their data using GML types. This providestancdegree of
flexibility both in the development process and in the resulting gatducts. For
instance, depending on the capability of the environment schema devetopgrs
exclusively use certain XML Schema types and choose not to inetepmiore obscure
ones because of incompatibility issues. As a result a partigatzsspatial phenomenon
can be described by different valid GML schemas.

GML is an XML grammar written in XML Schema for the madg| transport, and
storage of geographic information including both the spatial and nonigpaierties of
geographic features; it provides a variety of kinds of objectsléscribing geography
including features, coordinate reference systems, geometry, topdiogg, units of
measure and generalized values.

Just as XML helps the Web by separating content from presentahL does the

same thing in the world of Geography. GML allows the data providerdetiver

48

geographic information as distinct features. Using latest Webnblogies, users can
process these features without having to purchase proprietary GIS softwar

By leveraging related XML technologies such as XML Schema, [@¥|L Data
Binding Frameworks, XSLT, XPath, XQuery etc. a GML dataset besoeasier to

process in heterogeneous environments.

Figure 4-1 - OGC Geometry Model is based on three ajor geometry constructs, point, curve and

surface. The other necessary geometry constructseacreated using these main types.
Basically GML is an abstract model for geographic data whah lze used to
encode:
Features: abstract representations of map entities.
Geometry: encode abstractly how to represent a feature pictorially.
Coordinate reference systems
Topology

Time, units of measure

49

Observations and Measurements data collected from Sensors.
By incorporating GML in our systems as de facto data fonvetgain several
advantages:

1. It allows us to unify different data formats. For instancejousr organizations
offer different formats for position information collected from GPS atati GML
provides suitable geospatial and temporal types for this informatahby using
these types a common GML schema can be produced. Several Gbthawe
have developed are given in the Appendix A. (See also

http://www.crisisgrid.org/html/servo.htnfbr more GML schemas for GPS and

Seismic data)

2. As more GIS vendors are releasing compatible products and matenadca
institutions use OGC standards in their research and implementa@ac
specifications are becoming de facto standards in GIS commurdtyGML is
rapidly emerging as the standard xml encoding for geographic iafanm By
using GML we open the door of interoperability to this growing community.

3. GML and related technologies allow us to build general set of to@scess and
manipulate data. Since GML is an xml dialect, any xml relsgednology can be
utilized for application development purposes. Considering the factnthmbst
cases the technologies for collecting data and consecutively thee r& the
collected data product would stay the same for a long period efttieninterfaces
we create for sharing data won't change either. This enswaemg stable

interfaces and libraries.

50

4.2 .5Data Binding

Establishing XML or some flavor of it as the default message/idamat for the
global system requires consideration of a Data Binding Franke{fR®F) for generating,
parsing, marshalling and un-marshalling XML messages. Marshalling améunshalling
operations convert between XML-encoded formats and (in our ceaghlading classes
that can be used to simplify data manipulation.

Being able to generate XML instances and parsing them aregble amount of
time is one of the criteria while choosing such a framework, becqaessage processing
time would affect overall system performance as well as gbdormance of the
individual XML processing component.

Another criterion to consider is the ability of the binding frameworkuccessfully
generate valid instances according to the Schema definitionsisTehimajor problem for
DBFs since not all of the XML Schema types can be directpped to Object Oriented
Programming constructs. Some of the XML Schema types (suctbasit8tion Groups
which are heavily used in GML Schemas) do not correspond to ityfigisject Oriented
world and this causes difficulties while processing the XML docusnevdrious Data
Binding Frameworks offer different solutions, some of which are ralagorate than the

other and depending of the nature of the data a suitable framework must be chosen.

4.2.6Web Feature Service

Web Feature Service is one of the major OGC service stanfdard®ating a GIS
framework. Web Feature Service implementation specificationetefnterfaces for data

access and manipulation operations on geographic features usingad THé distributed

51

computing platform. Via these interfaces, a web user or secacecombine, use and
manage geodata from different sources by invoking several standardamysefaf].

OGC specifications describe the state of a geographic fdayumeset of properties
where each property can be thought of as a [name, type, value] tuple. Geografpinesf
are those that may have at least one property that is georakied. This, of course,
also implies that features can be defined with no geometric propertiés at al

As a minimal requirement a basic WFS should be able to provide tedues
geographical information as GML Feature Collections. However advanced versions
support “create, update, delete and lock operations” as well.

The operations that must be supported by basic WFS are defined as follows [15]:

- GetCapabilities: A Web Feature Service must be able to describe its cafehilit

Specifically, it must indicate which feature types it cawviserand what operations

are supported on each feature type.

- DescribeFeatureType A Web Feature Service must be able, upon request, to

describe the structure of any feature type it can service.

- GetFeature A Web Feature Service must be able to service a requestitye
feature instances. In addition, the client should be able to gpshith feature
properties to fetch and should be able to constrain the query lgpanal non-

spatially.

52

Figure 4-2 — WFS Interaction Steps: Client’s interation with WFS usually starts with a discovery
step which involves retrieving the capabilities daegment. After this the client may request details
about a certain feature by issuing a DescribeFeateiType request. However the most common

gueries used are GetFeature requests to retrieve gacular features.

Following is a typical scenario which describes the use oftibeeaoperations and
the interaction between a client and a Web Feature ServicegHeiFigure 4-2 — WFS
Interaction Steps: Client's interaction with WFS usually stavith a discovery step
which involves retrieving the capabilities document. After this dlent may request
details about a certain feature by issuing a DescribeFeghee®quest. However the
most common queries used are GetFeature requests to retrigicelgrafeatures.

displays these steps:

53

1. GetCapabilities: The clients (Web Map Server or users) start with requeating
capabilities document from WFS. When a GetCapabilities requesesar the
server may choose to dynamically create a capabilities document ams itéis, or
simply return a previously created xml document.

2. DescribeFeatureType After the client receives the capabilities document
he/she can request a more detailed description for any ofdahede listed in the
WEFS capabilities document. The WFS returns an XML Schema thetilaes the
requested feature as the response.

3. GetFeature The client may then ask WFES to return a particular portiompf a
feature data. GetFeature requests contain some property nathededture and a
Filter element to describe the query. The WFS extracts thg gundrbounding box
from the filter and queries the related database(s) that hwdsctual features. The
results obtained from the DB query are converted to that pantitedture’s GML

format and returned to the client as a FeatureCollection object.

WEFS allows clients to access and manipulate the geographiarefeawithout
having to consider the underlying data stores. Clients’ only vietheofdata is through
the WFS interface which allows the data providers to integraieugatypes of data
stores with one WFS instance. Figure 4-3 displays a sample case whereStseier is
accessed by different types of clients and has accesddos/éypes of spatial databases.
Clients interact with WFS by submitting database queries edcadeOGC Filter
Encoding Implementation [95] and in compliance with the Common Quenguzaye

[96]. The query results are returned as GML FeatureCollection documents.

54

Figure 4-3 — WFS may interact with multiple databass and various types of clients. In this figure the
WEFS server ha access to three different types of daiases which hold various types of data. The

clients interact with the WFS via standard WSDL inteffaces.
OGC Web Feature Service implementation specification [15] deHieTP as the
only explicitly supported distributed computing platform which requirses of one of the
two request methods: GET and POST. Although SOAP messages are also supported, they
are also required to be transported using HTTP POST method. OGC WFS

implementation specification [15] states that:

55

At present, the only distributed computing platform (DCP) explicitppsrted by
OGC Web Services is the World Wide Web itself, or morefisp#g, Internet

hosts implementing the Hypertext Transfer Protocol (HTTP).

HTTP supports two request methods: GET and POST. One or both of these methods

may be defined for a particular web feature service and offered by véceser

instance.

However employing HTTP protocol and GET or POST introduces signifi
limitations for both producers and consumers of a service. As discafswe Web
Services provide us with valuable capabilities such as providimglatd interfaces to
access various databases or remote resources, ability to lavchamaaage applications
remotely, or control collaborative sessions etc. Developmentiib Services and
Grid areas provide us with significant technologies for exposing esources to the
outer world using relatively simple yet powerful interfacasd message formats.
Furthermore sometimes we need to access several data sanmices several services
and for solving complex problems. This is extremely difficult i TR services but
rapidly developing workflow technologies for Web and Grid Services/ help us
orchestrate several services. For these reasons we have ba¥BSunplementation
on Web Services principals.

Furthermore complex scientific applications require accessriougadata sources
and run several services consecutively or at the same timeisTini¢ in the scope of
HTTP but can be supported using rapidly developing workflow technolawié¥db and

Grid Services. For these reasons we have based our Web Featice Bnplementation

56

on Web Services principals. Our goal is to make seamless cpwbli@lS Data sources
with other applications possible in a Grid environment.

GIS systems are supposed to provide data access tools to theasiseetl as
manipulation tools to the administrators. In principle the processeming data in a
particular format is pretty simple when it is made actéssis files on an HTTP or FTP
server. But additional features like query capabilities on datealftime access in a
streaming fashion require more complicated services. As the catypdé the services
grows, the client’'s chance of easily accessing data prodeci®ases, because every
proprietary application developed for some type of data require its Specialized
clients. Web Services help us overcome this difficulty by providtagdard interfaces to
the tools or applications we develop.

No matter how complex the application itself, its WSDL intexfagill have
standard elements and attributes, and the clients using thisdeteda easily generate
methods for invoking the service and receiving the results. This matloees providers
to make their applications available to others in a standard way.

Most scientific applications that couple high performance computimgilation or
visualization codes with databases or real-time data sourqgageranore than mere
remote procedure call message patterns. These applications agnsmncomposite
systems where some of the components require output from othdrghay are
asynchronous, it may take hours or days to complete. Such propeqigs® additional
layers of control and capabilities from Web Services which intregltite necessity for a

messaging substrate that can provide these extra features.

57

4.2.7Web Service Implementation of Web Feature Service

We have initially implemented Web Service version of a basic Wikigh supports
the three mandatory operations through a WSDL interface: Gédilllaps,
DescribeFeatureType and GetFeature.

Following picture depicts the components of the WSDL document for this

implementation:

Figure 4-4 -WSDL Components of our WFS implementationWe expose three basic capabilities

required by the WFS specification as the Web Servicgperations.

Each supported operation takes an XML document as argument and retuhes anot
XML document as response. While implementing these operations ieba S&rvice
context we have to choose appropriate types. Since the requéstssponses are well-
defined XML documents one possibility is to create object reptasens of these in our
favorite programming language, i.e. we can create a Java Qbjeeach GetFeature
request document and the returning GML document can be another Jasta 8bjthe
communication between WFS and the client is based on exchangiagobgects.
However this approach severely undermines the interoperabilitychatits who might
use other programming languages such as C++ or Python to commumittateur
service.

As a simpler solution we have used strings as argument and rgbeshin these

operations. This allows clients who use other programming languaga®dte client

58

stubs to our WFS-WSDL to simply send and receive XML documeritsowti any
conversions. However this method also has its shortcomings whiadesegbed in the
WES Performance section.

We chose MySQL as our data store to use with our WES implatr@ntWe have
collected several types of geographic data from various ordimees and inserted these
to our database. Some of the data types are:

- QuakeTables Fault Database [97], SERVO [13, 98] fault repository for @adifor

Compatible with GeoFEST, Disloc, and VirtualCalifornia [99]
- GPS Data sources and formats (RDAHMM [58] and others).
JPL time series [100]
SOPAC time series [101]
USGS time series [102]
Seismic Event Data (RDAHMM and others)
Southern California Seismic Network (SCSN) format seismic records [103]
Southern California Earthquake Data Center (SCEDC) format records [104]
Dinger-Shearer format seismic records [105]
Haukkson format seismic records [106]

Also to support producing meaningful maps by Web Map Service [69] we have
U.S. and World map data including borders, county boundaries, cities etc. vi&nce
heavily work on seismic and GPS data for California we haveaeadditional features

like fault lines, rivers, lakes for this state.

59

4.3 Web Feature Service Architecture

4.3.1Creating a Geospatial Database

The geospatial data may be obtained from various types of sourdesgssaoaline
repositories, coordinate, raster or vector data files, online sersatedlites etc. To
facilitate data collection from various sources we wrote set@vbs such as HTTP, FTP
Clients which download files from online servers. However some adpggial data such
as seismic records or GPS time series are dynamic, andumrgly updated. To keep
our geospatial database up to date, we also wrote servicesrnhag sat up to execute
periodic downloads and database insertions. Once the data are avadallyethey must
be inserted into the database for future queries.

Today a large volume of geographic data is available online and &&RSoe
thought of as a unified solution to serve this data in a common fokvathave
introduced a simple approach to create relational database tablesrious types of
geospatial data which are used by WFS for creating GMIuFe@ollection objects. This
approach allowed us to support various types of geographic querieatgdniey the
clients. Mostly these are SELECT queries asking for a seh@for more feature types
but we also support intersections junctions, overlays etc.

Consider the following segment from SCEDC seismic cataloydar 2004[104]

[107] :

Table 4-1 — Sample Data from SCEDC Seismic Catalog

#YYY/MM/DC | HH:mm:SS.ss | ET | MAC | NV LAT LON

2004/01/01 00:28:59.26 le .52 1|34.163 -116{424

60

2004/01/01 01:31:28.13 le [L.60 h| 34384 -116.922

2004/01/01 01:58:38.83 le p.03 1|32.232 -115(726

DEPTH| Q EVID NPH| NGRM

131 A 14018180 29 | 407

10 A 14018196 30 |554

7.0

O

14018200 15 | 205

We can easily deduce that the latitude and longitude valug¢seaomly geographic
information available for this particular data type. To storedédita we create a database

table as following:

Table 4-2 — MySQL Database Table structure for SCED Seismic Records

mysql> describe scedc;

+ + B — R B R +
| Field | Type | Null | Key | Default | Extra |
+ + B — R B R +
|YEAR |yeard) [NO | | | |

| MONTH | tinyint(2) |[NO | | [|

| DAY [tinyint(2) |NO | | | |

| DATE | double [NO | | | |

| HOUR | tinyint(2) |NO | | | |

| MINUTE | tinyint(2) |[NO | | | |

| SECOND | decimal(9,2) |[NO | | | |
| ET [char(2) |NO | | [|

MAGNITUDE	decimal(9,2)	[NO		
MAGNITUDE_TYPE	char(1)	NO		
LATITUDE	decimal(9,3)	NO		

| LONGITUDE | decimal(9,3) |NO | | |

| DEPTH | decimal(9,1) [NO | | |
[QUALITY |char@) [NO | | | |
| EVID lint11) |[NO | | |

| NPH |tinyint@3) [NO | | | |

| NGRM |tinyint(4) [NO | | | |
+ + S S — S S— S S—— +

17 rows in set (0.01 sec)

For this feature type the queries are quite simple becausdimach the original
ASCII file actually corresponds to a geographic point and thedattaassociated with

that point and more complex queries such as intersections or junggonstanecessary.

61

However for more complex features that contain several points, din@slygons we
need to find minimum and maximum values of the location elements to support queries.
Another example feature type is California Fault lines. Hacitt consists of a

number of segments. We can think of each segment as a direetween two points.

For instance following data describes several segments of the San Andreas Fault

Table 4-3 — Sample geospatial data, California fatilines

Fault Name| Segment Number Coordinates

San Andreas 62 -115.8,33.42 -115.73,33.87
San Andreas 61 -115.93,33.52 -115.86,33}47
San Andreas 60 -116.6,34.01 -116.52,33.98

Following database table is created to hold the fault segments data:

Table 4-4 - MySQL Database Table structure for Cafornia fault lines

mysql> describe ca_faults;

+ + B B B —— Fommmeee +
| Field | Type | Null'| Key | Default | Extra |
+ + B B B —— Fommmeee +
| Name | varchar(100) | YES | | | |

| Segment | varchar(100) | YES | | | [
| Author | varchar(100) | YES | | [|
| coordinates | varchar(100) | YES | | | [

| LatStart | double |[YES | |O [|

| LatEnd | double |[YES | |O | |

| LonStart | double |YES | |O | |

| LonEnd | double |[YES | |O | |
+ + S — S R — S S— +

8 rows in set (0.00 sec)

Since the geospatial entry for his data type is “line tywe’need to define two
points for each segment, a starting point and an end point. Once wéhaaeographic
data in the database the WFS can connect and execute queries. Howatud have to

find a way which allows easy addition of new feature typesht& database. The

62

challenge here is that geographic data is extremely diviersay be as simple as a point
and as complex as topographic data or complex features with 3 dim&nSur database
and WFS integration scheme should be flexible enough to allow ddg&oa of these
various kinds of features to the database and consecutively fasatgemeof the
corresponding GML documents. We have developed a simple and easyptosystem

to solve this problem. Our approach requires creation of a set of files as descuwed bel

4.3.2Adding New Features

For each new feature type to be added we first creatkratise xml Schema. This
schema inherits necessary GML schemas and describes bothpigogriormation and
non-geographic metadata about the feature.

The second step is to create a sample xml instance from th8ckema with all
the possible element and attributes present. This is the xretakealf the feature type or
simply an ‘empty’ feature-xml document and should not have anyalaetement or
attribute values.

The third file to be created is a mapping file that associheesample xml instance
with the relational database table. This xml file contagmgerl MapElementlements
each of which has two attribute¥SDNodeXPathand DBColumnName The first
attribute contains the XPath [108] path to a particular elemehiixrml instance while
the second one contains the relational database column name forrticatgraelement.
For instance the mapping entry for the Magnitude column from the SCEDC [107]cseismi

catalog example is:

<MapElement No =" 6" XSDNodeXPath ="//Magnitude " DBColumnName="MAGNITUDE>

63

Here the XPath value to this element in the xml-instancéMiaghitude and the
actual magnitude values are stored in the MAGNITUDE column.

The last file is the configuration file for this feature @ymvhich includes the
database connection information, physical paths of the aforementitasedchémes of the
columns that contain maximum and minimum values for the geographac ahal
metadata.

To further explain our approach we give the required files aefmie SCEDC
seismic catalog. Following picture depicts a graphical reptagen of the XML schema
describing seismic events.

Note from the above schema that the geographic information enttgsigibed
using a complex typegil:PointProperty Type " inherited from the GML2 schemas:

<element name ="Location - type ="gml:PointPropertyType ">

The gml:Point type has two choices, gml:coord and gml:coordinates.

gml:coord type is extended from gml:CoordType which contains X, YZavalues

for three dimensional coordinate systems.

64

Figure 4-5 - XML Schema for SCEDC and SCSN SeismiCatalogs

65

For instance we can encode GPS measurements with this caypgeesince these
measurements contain Latitude, Longitude and Height values.

The geographic element for the fault schema would be

<xs:element name =" SegmentCoordinates " ref =" gml:lineStringProperty ">
<gml:lineStringProperty >
< gml:LineString srsName ="EPSG:4230">
<gml:coordinates >-82.7335,27.8846,1.0 -82.7586,28.1352,1.0 -
82.6368,28.4571,1.0 -82.7335,27.8846,1.0 -82.7218,28.1763,1.0 -
82.5235,28.6658,1.0 -82.2489,27.2001,1.0 -81.5399,28.6771,1.0 -

81.1583,28.4414,1.0 </ gml:coordinates >
</ gml:LineString >
</ gml:lineStringProperty >

since the fault segments are actually lines and contain multiple coordifatésstance:

The second file is an xml instance generated from the schema:

66

<?xml version="1.0" encoding="UTF-8"?>
<SeismicEvent

xmlns:gml =http://www.opengis.net/gml

xmlns:xsi =" http://www.w3.0rg/2001/XMLSchema-instance
xsi:schemal.ocation =" http://sensorgrid.org/seismicity.xsd ">

<Date >

<Year />

<Month />

<Day/>

</ Date >

<Time>

<Hour />

<Minute />

<Second />

</ Time >

<Location >

<gml:Point srsName ="EPSG:6356">

<gml:coord >

<gml:X/ >

<gmlY/ >

</ gml:coord >

</ gml:Point >

</ Location >

<EventType/ >

<Magnitude/ >

<MagnitudeType/ >

<Depth/ >

<Quality/ >

<NPH/>

<NGRM#

<Eventld/ >

</ SeismicEvent >

Here the element that holds geographic information which is iedefiom the

GML schema is

67

<Location >
<gml:Point
<gml:coord >
<gml:X
<gml:Y
</ gml:coord >
</ gml:Point >

</ Location >

srsName =" EPSG:6356">

/>

/>

Note from the xml instance that none of the elements contain actas except

an attribute which is the same value for all the features.

The third file created for this feature type is the following mapping type:

<MapElements xmins:xsi
<MapElement No =" 0"
XSDNodeXPath="
DBColumnName="
<MapElement No ="1"
XSDNodeXPath="
DBColumnName="
<MapElement No ="2"
XSDNodeXPath="
DBColumnName="
<MapElement No =" 3"
XSDNodeXPath="
DBColumnName="
<MapElement No =" 4"
XSDNodeXPath="
DBColumnName="
<MapElement No ="5"
XSDNodeXPath="
DBColumnName="
<MapElement No ="5"
XSDNodeXPath="
DBColumnName="
<MapElement No =" 6"
XSDNodeXPath="

DBRColumnName="

<?xml version="1.0" encoding="UTF-8"?>

=" http://lwww.w3.0rg/2001/XMLSchema-instance

/IDate/Year
YEAR/>

/IDate/Month
MONTH>

//IDate/Day
DAY'/>

/ITime/Hour
HOUR/>

[[Time/Minute
MINUTE'/>

/ITime/Second
SECOND>

/[EventType
ET'/>

//Magnitude
MAGNITUD"/>

68

<MapElement No ="7"
XSDNodeXPath="//MagnitudeType
DBColumnName=" MAGNITUDE_TYP®#>
<MapElement No =" 8"
XSDNodeXPath="//Location/gml:Point/gml:coord/gml:X
DBColumnName=" LATITUDE"/>
<MapElement No ="9"
XSDNodeXPath="//Location/gml:Point/gml:coord/gml:Y
DBColumnName=" LONGITUDE/>
<MapElement No =" 10"
XSDNodeXPath="//Depth
DBColumnName=" DEPTH/>
<MapElement No ="11"
XSDNodeXPath="//Quality
DBColumnName=" QUALITY"/>
<MapElement No ="12"
XSDNodeXPath="//Eventld
DBColumnName" EVID"/>
<MapElement No ="13"
XSDNodeXPath="//NPH "
DBColumnName=" NPH/>
<MapElement No =" 14"
XSDNodeXPath="//INGRM"
DBColumnName=" NGRM>
</ MapElements >

This file is used after the WFS retrieves the queriecufeatfrom the database.
WEFS then uses this mapping file to populate the xml instance with the results.

The last file is the following configuration file:

69

<?xml version="1.0" encoding="UTF-8"?>
<feature >
<db>

<type >mySQI</ type >

<serveraddress >gf8.ucs.indiana.edu </ serveraddress >

<dbname>cce </ dbname>
<tablename >scedc </ tablename >
<driver >com.mysql.jdbc.Driver </ driver >
<username >uname</ username >
<password >passwd </ password >
</ db>

<xml_instance >

<localaddress >/home/galip/wfs/seismic_instance.xml

</ xml_instance >
<map_file >
<localaddress >/home/galip/wfs/scedc_mapping.xml
</ map_file >
<xmlschema >
<localaddress >/home/galip/wfs/seismicity.xsd
</ xmlschema >
<maxmin_column_names >
<minx >LONGITUDE/ minx >
<miny >LATITUDE</ miny >
<maxx>LONGITUDE/ maxx>
<maxy>LATITUDE</ maxy>
</ maxmin_column_names >
<Metadata >

<Name>scedc </ Name>

</ localaddress

</ localaddress >

</ localaddress >

<Title >California Earthquake Data in SCEDC Format </ Title >
<Abstract > </ Abstract >
<Keywords >Seismic, WFS </ Keywords >
<SRS>EPSG:6356</ SRS>
<Operations >
<Operation type ="Query"/>
</ Operations >
<MetadataURL >http://www.crisisgrid.org </ MetadataURL >

</ Metadata >

</ feature >

>

70

WEFS uses this file to locate and query the database that cottiengarticular
feature type. After the query results are returned it tsefle locations provided in this

file to generate the GML feature collection.

4.3.3Web Feature Service Operation Steps

Figure 4-6 - Architectural diagram of the WFS implenentation

Figure 4-6 - Architectural diagram of the WFS implemeatashows the internal
structure of the WFS implementation. A typical WFS request-respoyde starts with
the client request. The Client communicates with the servicthei®/SDL interface. A
request may include several types of queries such as SELEROATE, DELETE etc.
Since we have implemented the basic WFS currently we only suppECT queries.

After the request is received the WFS extracts the SQLydten the request using the

71

OGC Filter Encoding implementation [95] classes. Then the gseexeacuted and the
results are received. At this point the WFS uses the configufdésrexplained above to
create the GML FeatureCollection object. Depending of the typeeoWFS (Streaming
or Non-Streaming) the results are returned to the user via appeophannel. The
streaming WFES is explained in the next section.

Here we explain the request-response cycle with example documestample

guery encoded according to OGC Filter Encoding Implementation [109] is as follows

<?xml version="1.0" encoding="is0-8859-1"?>
<wfs:GetFeature outputFormat =" GML2

gml =http://www.opengis.net/gml

wfs =http://www.opengis.net/wfs

ogc =" http://www.opengis.net/ogc ">
<wfs:Query typeName ="ca_faults ">
<wfs:PropertyName >name</ wfs:PropertyName >
<wfs:PropertyName >segment </ wfs:PropertyName >
<wfs:PropertyName >author </ wfs:PropertyName >
<wfs:PropertyName >coordinates </ wfs:PropertyName >
<ogc:Filter >
<ogc:BBOX>
<ogc:PropertyName >coordinates </ ogc:PropertyName >
<gml:Box >
<gml:coordinates >-150,30 -100,50 </ gml:coordinates >
</ gml:Box >
</ ogc:BBOX >
</ ogc:Filter >
</ wfs:Query >

</ wfs:GetFeature >

This query simply means that the user request the name, segmutrr and
coordinates properties of the fault features which are inside-1t0@o -100,50
bounding box. The bounding box is defined as a rectangular region withmimx,and

maxX, MaxY coordinates.

72

After the WFS receives this request it parses the xml abtdotx the required

properties, query type and decodes the Filter to create a SQL query likarfgllow

SELECT name, segment, author, coordinates FROM ca_f aults WHERE

(LatStart>-150 and LonStart>30 and LatEnd<-100 and LonEnd>50);

Afterwards WFS uses the configuration file of this featype to find the database
that holds this feature and associated username and password fiiortdaing such a
configuration file allows us to integrate several databaséis ene WFS. Also the
configuration file holds the location of the other required fileshsas the database
mapping file. WFS uses the mapping file to create the SQL gAsrgoon as the results
are returned the WFS uses the sample xml file and the majlging populate the GML
features and create a GML feature collection.

Following is a segment from the feature collection generated for the adopwvest:

<wfs:FeatureCollection
xmins:wfs =" http://www.opengis.net/wfs
xmlns:gml =" http://www.opengis.net/gml
xmins:xsi =" http://lwww.w3.0rg/2001/XMLSchema-instance
xsi:schemal.ocation =" http://crisisgrid.org/schemas/wfs/fault_new.xsd ">
<gml:boundedBy >
< gml:Box srsName =" http://www.opengis.net/gml/srs/epsg.xml#27354 ">
< gml:coordinates decimal ="."c¢s ="," ts =" ">-150,30 -
100,50 </ gml:coordinates >
</ gml:Box >
</ gml:boundedBy >
<gml:featureMember >
<fault >
<name>Bartlett Springs </ name>
<segment >0.0 </ segment >
<author >Rundle J. B. </ author >

73

<gml:lineStringProperty >
<gml:LineString srsName ="null ">
<gml:coordinates >-123.05,39.57 -122.98,39.49
</ gml:LineString >
</ gml:lineStringProperty >
</ fault >
</ gml:featureMember >
<gml:featureMember >
<fault >
<name>Bartlett Springs </ name>
<segment >1.0 </ segment >
<author >Rundle J. B. </ author >
<gml:lineStringProperty >
<gml:LineString srsName ="null ">
<gml:coordinates >-122.98,39.49 -122.91,39.41
</ gml:LineString >
</ gml:lineStringProperty >
</ fault >
</ gml:featureMember >
<gml:featureMember >
<fault >
<name>Bartlett Springs </ name>
<segment >2.0 </ segment >
<author >Rundle J. B. </ author >
<gml:lineStringProperty >
<gml:LineString srsName ="null ">
<gml:coordinates >-122.91,39.41 -122.84,39.33
</ gml:LineString >
</ gml:lineStringProperty >
</ fault >

</ gml:featureMember > ..

</ gml:coordinates

</ gml:coordinates

</ gml:coordinates

4.3.4Web Feature Service Capabilities

One of the most important properties of WES is its ability to pewnetadata

74

about the supported features and capabilities. We have developed a metWdesf to
dynamically generate the capabilities document on the flyadsté providing a static

document. This method allows WFS to ignore feature types stored imaacessible

database. To do this the WFS first collects the database ifonfiar all feature-types
and tests if it can open a connection. Then it uses the individuayueation files for
each supported feature type to generate the capabilities docérteample capabilities
document can be seen in the Appendix.

The capabilities document first describes the access methtids WFS. Since the
specification is based on HTTP Get and POST methods it has rméetPast
OnlineResourceelements. We provide the WSDL endpoint address instead. After the
access methods the supported feature types are listed. Taese fgpes may be located
on various distributed databases which are opaque to the clienastisettion contains

the OGC Filter Encoding capabilities supported by this particular WFSlatistal

4.3.5Performance Issues

We have tested our initial Web Service implementation of WF8\varal scenarios
such as producing fault maps of Southern California, displaying iseisistory of
particular regions on the map etc. A very interesting applicatioratiomwas integrating
our GIS services with Pattern Informatics [65] code to fotdodisre seismic activities in
a selected geographic region. This test case is explained Usth€ases section of this
chapter. Our experience with these tests showed us several importamg:lesso

- If the size of the GML documents provided by WFS do not exceed several

Megabytes the response time is acceptable. However for ldagar sets the

response time is relatively long; and in some cases the Web Service thnevesit

exceptions. This is caused by our choice of Web Service containech@pAxis

1.2.

75

- Web Service require us to create the whole response string ohettiteside and
transport to the client at once. However maximum size of the Xivlhg depends
on the system configuration and cannot be very large because the strinte icrea

the memory.

4.4 Streaming Web Feature Service

The usefulness of Web Services is constrained by several factors. Theyusau be

in several cases such as
The volume of data transferred between the server and the diewt ihigh.
Actual amount of data can be transferred depends on a numlaetatflike the
protocol being used to communicate or maximum allowed size by HTTP;
Time is not a determining factor. Despite the obvious advantagesnctit TP-
based implementations do not provide desirable results for systameeguire
fast response and high performance. This is simply due to thesd=laged by
data transfer over network, network constraints, and HTTP request-respons
overhead.

The original WFS specification is based on HTTP Get/Post metbotshis type
of service has several limitations such as the amount of tadlt can be transported,
the rate of the data transportation, and the difficulty of orchesgrenultiple services for
more complex tasks. Web Services help us overcome some of thesemprdiye
providing standard interfaces to the tools or applications we dev@lapexperience
shows that although by using Web Services we can easily irdeggaeral Gl Services

and other services to solve complex tasks, providing high-rate tranigpodapabilities

76

for large amounts of data remains a problem because the pure WelbkeSe
implementations rely on SOAP messages exchanged over HTTP ohklssion has led
us to an investigation of topic-based publish-subscribe messagingisysteexchanging
SOAP messages and data payload between Web Services. We ledeaus
publish/subscribe messaging system which provides several uUsetures besides
streaming data transport such as reliable delivery, abilityhtmse alternate transport
protocols, security and recovery from network failures. In the netiosewe discuss

NaradaBrokering, our choice for publish/subscribe messaging system support

4.4.1NaradaBrokering

Community Grids Lab has been developing NaradaBrokering [110];trébdied
messaging infrastructure which goes beyond the remote procediumeethodology pure
Web Services approach is based on. It provides two related caggbHirst, it provides
a message oriented middleware (MoM) which facilitates comratiaits between
entities (which includes clients, resources, services and pydaRresigh the exchange of
messages. Second, it provides a notification framework by effigiemiting messages
from the originators to only the registered consumers of the message in question.

NaradaBrokering facilitates the idea of loosely coupled systbgn supporting
asynchronous communication and it can be used to support different intesaoy
encapsulating them in specialized messages called events. Eamntencapsulate
information pertaining to transactions, data interchange, method invocasigstem
conditions and finally the search, discovery and subsequent sharingsaafraes.|

NaradaBrokering]

77

Some of the important features of NaradaBrokering can be suretas follows
[110]:

Ensures reliable delivery of events in the case of broker art ¢adures
and prolonged entity disconnects.

Provides compressing and decompressing services to deal with events
with large payloads. Additionally there is also a fragmentatierviee which
fragments large file-based payloads into smaller ones. A coadeservice then
merges these fragments into the large file at the receiver side.

Provides support for multiple transport protocols such as TCP (blocking
and non-blocking), UDP, SSL, HTTP, RTP, HHMS (optimized for PDA aid c
phone access) and GridFTP with protocol chosen independently at each link

Implements high-performance protocols (message transit tirhéoco? ms
per hop)

Order-preserving optimized message delivery

Quality of Service (QoS) and security profiles for sent anctived
messages

Interface with reliable storage for persistent events,bielidelivery via
WS-Reliable Messaging.

Discovery Service to find nearest brokers /resources
Additionally, NaradaBrokering allows all services to be linked lanaged reliable

streams. These capabilities allow fault tolerance and asymmlis messaging with
publish-subscribe semantics [22]. A recent addition to the NaradaBrgKertures is a

sophisticated management environment that controls and monitorseathstin a Grid

78

[23] and extends fault tolerance across streams, services asdgaedrokers. The latter
allows one to control the flow of data into filters so that thexen® overflow.
NaradaBrokering supports the subscription of redundant services tofaidgltitolerance.
The Web Service messages flowing in NaradaBrokering can beexdht any link. This
provides for dynamic caching to support system performance ahgbisised in message
throttling. NaradaBrokering has been successfully used for audio-viaderencing and
other collaborative tools in the commercial Anabas product [25] and the smece

GlobalMMCS project [111][13, 23, 26].

NaradaBrokering has been used extensively in several projects that regil+time
streaming data access. Because of its relevancy to oaraiogias an example how it has

been used to provide reliable streaming support we summarize GlobalMMCS here;

4.4.2GlobalMMCS: Using NaradaBrokering to Manage
Audio/Video Streams

We think that the nature of sensor data is somewhat simil&iatoot audio/video
and a Service Oriented Architecture which employs NaradaBrokenimgjd exhibit high
performance for sensor filter services.

Global Multimedia Collaboration System [111] is designed to providéaldea
videoconferencing services to a diverse set of users. The sysésniNaradaBrokering as
the media distribution medium. Topics provided by NaradaBrokering s&svéhe

messaging channels among participants in a session to exchange data [112].

79

Figure 4-7 - Main Components of GlobalMMCS architeture [113]

NaradaBrokering has proved to be very efficient in delivering audd \adeo
streams to a group of participants in a meeting.

The topic based publish-subscribe system works as follows: The smacer the
data provider publishes copy of a stream to a topic and the broker ketelivers this
stream to all the subscriber of this topic by duplicating whaneeeessary. To save
network bandwidth NaradaBrokering avoids sending multiple copies cfathe stream
on the same link. Additionally it calculates the near-optimal soditem sources to
destinations by organizing the brokers in hierarchical cluster archéectur

This architecture provides a scalable and flexible framewordidtribute media
processing units. Additional futures of NaradaBrokering allowsttstem to be dynamic;
the capacity of the system can be increased by easily addmgomputing resources
and new processing services can be integrated to support eveinghareds of end
users. Performance of the GlobalMMCS system is investigateghsvely and the

results show that the system exhibits high performance for audio/video me#fiags |

80

4.4.3Comparison of Streaming and Non-Streaming Web
Feature Services

The Streaming-WFS uses standard SOAP messages for reaginngs from the
clients; however, the query results are published (streamed) poblesh/subscribe
messaging substrate topic as they become available. SinasendySQL database for
keeping geographic features, we employed MySQL streamingt st capability by
streaming the results row by row. This allowed us to receive theaviresults and
publish them to the messaging substrate instead of waiting forewhsult set to be
returned. The performance results (see Chapter 5 for detailenirpanice results) show
that (especially for smaller data sets) streaming remavesof overhead introduced by
object initializations.

Table 6 gives a comparison of the streaming and non-streamirigngers our
WEFS implementations. The data requested is the Southern Caldersraic records for
the eventful year of 1992, initially obtained from Southern CalifoEasthquake data
center [SCEDC] [107] and converted into GML for our Web Feature &erVine first
column is the minimum magnitude of the earthquake, the second column thieodata
size of the query result. Timings for Streaming WFS contaims dolumns; the first
column shows the time it takes to generate and stream out Ghflirdecollection, the
second column shows the total response time. The fourth column shows ahe tot
response time for non-streaming WFS. The difference betweemmsigeand non-
streaming WFS versions is that streaming version does not acterthdaguery results
and stream as soon as they become available. The timingsnailéseconds and include
object initializations, query processing, database query and transport times.

81

To measure the performance of two WFES versions we made séssislusing
seismic catalog for year 1992 from Southern California Eartrejuakta Center
(SCEDC). Tests were performed for the following lower bounds wgismic event
magnitudes: M =5.0, 4.5, 4.0, 3.5, and 3.0. These correspond to increasinig daa, fi
as shown in Table 4-5. We measure WFS performance by timengtéps needed to
extract seismic records with specific latitude/longitude boundingsydime periods, and
lower bounds for the earthquake threshold magnitudes. These extraabeds race
returned as GML responses. This test is representative ofaypbcations which need
to extract records from remote databases using the WFS.hese ttests data from
1/1/1992 to 12/31/1992 were requested and latitude/longitude bounding box (-117.0,

32.0)-(-114.0-37.0) was used.

Table 4-5 - Performance Comparison of Streaming antllon-Streaming WFS Versions

Number Streaming WFS .
Event of Data Size . Response Time
Magnitude Seismic (KB) Time for Total Non-Streaming
Lower Bound streaming the Response WFS
Events result Time
3 1790 880 24142 4570 5662.6
35 587 287 826.7 3405 4414
4 209 106 320.1 2945 4098.7
4.5 67 36 100 2661 3917.1
5 19 11 31.3 2425 39125

We can deduce from the table that for larger data sets when sis#agning our
gain is about 25%. But for the smaller data sets this gain becalmoes 40% which is
mainly because in the traditional Web Services the SOAP neessmyto be created,

transported and decoded the same way for all message sizesnttudides significant

overhead.

82

Other improvements were also made in Streaming-WFS to male htgh

performance service. These improvements are discussed in Chapter 5.

Figure 4-8 - WFS in a Grid environment. The WFS servefeature data collected from various
sources such as online file servers, local files sensor observation archives. The collected dataer

inserted into our GIS archives and served by the WF$ GML format.

Figure 4-8 shows the integration of the WFS with data soumesclEents. The
WEFS is able to return the results as SOAP messages amsirer the NaradaBrokering
publish/subscribe messaging substrate. This figure also summauize8orts to create a
GIS Data Grid. The first steps for this work required hamgstlata from various
publicly accessible archives such as Southern California EarthgDake Center
(SCEDC) seismic records, ANSS seismic archives, NASA-GPS time series and
SOPAC GPS time series archives. For these purposes wereatedca Data Harvester

module inside the WFS which has HTTP and FTP client implementatida$iave also

83

implemented a programmable harvester tools which connects e celivers to retrieve
regularly updated seismic records.

Once the data files are retrieved from the online archived/#@ uses the methods
explained in Chapter 4.3.2 to insert these data into our spatial skataifeer this point

the data are served to the clients as GML documents through WFS interfaces.

4.5 Geophysical Data Grid Examples

Our WFES implementations have been used in several GIS projetésaagrovider

services, here we discuss two examples.

4.5.1Los Alamos National Laboratory, NISAC SOA
Architecture

We have applied our GIS Grids ideas to create a Service &tidmchitecture for
Los Alamos National Laboratory, National Infrastructure Simuladioth Analysis Center
[71]. We have integrated several Web Services including thendtrgdVeb Feature
Service with IEISS (Interdependent Energy Infrastructure SimuolaSystem) [114].
IEISS is a suite of analysis software used to understand the Inoperations of the
infrastructures and various implications of the interdependencidsed® the
components[71]. In our sample SOA demonstration we were able to inZ¢®8 Lo
simulate interdependencies between electrical and naturahfgastriucture components
using a provided sample data set. The data do not actually corresposal-teorld

infrastructure maps however it allowed us to demonstrate thabtheally desktop based

84

simulation applications could be integrated into a Grid architecisirey Web Services
approach.

In the usual operation IEISS and similar software are beingasskxtal simulation
applications. The data are either being kept in databases sBE8Raspatial database, or
in proprietary XML files. The person who runs the application colleetdata to local
machine and runs the simulation. The results are usually shate@witils. However
this approach has several limitations; every time the siroolé to be run the data have
to be copied to the local file system, there is no way of runthi@gimulations remotely
and getting the results instantly. So we have created an arngteteohnsisting of several
Web Services which exposes IEISS as a Web Service and showsatiisis results on
an interactive online mapping application. Figure 8 shows the comparehtiata flow
in this architecture.

The sample electric and natural gas infrastructure componerpsoarded to us as
XML files. We have inserted the components into a MySQL databvdsch allowed us
to query for specific components in particular geographic regiogard-B visualizes the
components. Figure 10 shows the overlays of these components on e gaitlite
provided by the NASA OnEarth WMS Server [115]. We used an open solite G

viewer GAIA [116] to create these figures.

85

Figure 4-9 — NISAC SOA Demonstration ArchitecturalDiagram and Data Flow

86

Figure 4-10— Original IEISS Data for the Florida Staite Electric Power and Natural Gas Components

Figure 4-11 — Sample Florida State Electric Powerrad Natural Gas Components as overlays on a
Satellite Picture provided by NASA OnEarth WMS Serve. Electric power components are

connected with green, natural gas components are moected with red lines.

87

The components of this architecture are as follows:

Feature Database This is our MySQL spatial database which holds various
geospatial features such as California faults and earthquekd i state borders, global
seismic hotspots etc. For the NISAC SOA demonstration we haveretgu sample
XML file which contains natural gas and electric power compontmtshe State of
Florida. This sample data is inserted into feature databaseoadistinct feature types.
This allows us to make geospatial queries on the feature data aad tite desired
components as GML documents.

Web Feature Service: Provides interfaces to access and query the Feature
Database and receive the geospatial features. The featenesoaded as GML Feature
Collections which then can be used as map overlays or for geo-pnocessi We have
created a lightweight WFS in this project (WFS-L) which neee the new model XML
created by IEISS, converts to GML and publishes to NB.

UDDI Registry: This service provides an API for publishing and discovery of geo-
spatial and visualization services. It extends existing Univ&seacription, Discovery
and Integration (UDDI) [79] Information Model to provide GIS domain cdpe
Information Services.

Web Map Client: This is a thin client to the Web Map Server. It provides a user
interface that displays the map overlays and allows client interactionhgithaps.

Web Map Server: Relaysthe client requests to the WFS, and receives the response
as GML documents. WMS then converts GML to map images (JPG, TIFF, $V@rad

forwards these to the Web Map Client.

88

NaradaBrokering: This is a standalone publish/subscribe service. Allows
providers to publish their data products to topics and forwards thisoditea subscribers
of a particular topic. We use NaradaBrokering as the meggagbstrate of the system.
All GML and XML data transport is done through this service.

Context Service: The Context Service provides a dynamic, fault tolerant metadata
hosting environment to enable services to share information withorkdlaw session to
correlate their activities.

Context Respondent Handler The Context Response Handler is used to
communicate with the Context Service. It allows Context Sertacanform its
consumers about results of the operations.

gml2model Tool: Geospatial data exchange format for the system is GML.
According to the user’s selection WFS encodes requested geofgxditiag data in GML
and publishes to a certain NaradaBrokering topic. A NaradaBrgk&ubscriber tool is
used to save GML FeatureCollection published by WFS into a fil&SEéquires input
data to be in a certain format called XML Model. We wroted talled gml2model to
convert GML FeatureCollection documents to IEISS XML Model format.

shp2gml Tool One type of the IEISS outputs is ESRI Shape files which show
calculated outage areas etc. We use an open source tool bplBepng by open source

deegreeproject fittp://deegree.sourceforge.netd convert these shape files to GML,

which are sent to WMS Client by the lightweight WFS.
Data Flow in this architecture is explained here (Figure 8):

0. WFS and WMS publish their WSDL URL to the UDDI Registry.

89

. User starts the WMS Client on a web browser; the WMS Client displays the
available features. User submits a request to the WMS Server by setkssinag
features and an area on the map.

. WMS Server dynamically discovers available WFS that provide requested
features through UDDI Registry and obtains their physical locations (WSD
address).

. WMS Server forwards user’s request to the WFS.

. WFS decodes the request, queries the database for the features and receives the
response.

. WFS creates a GML FeatureCollection document from the database response and
publishes this document to NaradaBrokering toNtSAC/WFS’; WMS Server

and IEISS receive this GML document.

WMS Server creates a map overlay from the received GML document and sends
it to WMS Client which in turn displays it to the user.

After receiving the GML document IEISS NB Subscriber invaget2model

tool; this tool converts GML to XML Model format to be processed by IEISS.

. User invokes IEISS through WMS Client interface for the obtained geospatial
features, and WMS Client starts a workflow session in the Context Se@ice.
receiving invocation message, IEISS updates the shared state data for the
workflow session to belEISS_IS_IN_PROGRESN the Context Service. Both
IEISS and WMS Client communicate with Context Service via asynchronous
function calls by utilizing Context Respond Handler Service. IEISS runs and

produces an ESRI Shape file that has the outage areas for the given region.

90

7.

IEISS invokeshp2gmltool to convert produced Shape file to GML format.

After the conversion IEISS updates shared session state to be
“IEISS_COMPLETED”As the state changes, the Context Service notifies all
interested workflow entities such as WMS Client. To notify WMS-Client, the
Context Service publishes the updates to a NB topic
(/NISAC/Context://IEISS/SessionStatyigrom which the WMS-Client receives
notifications.

WMS makes a request to the WFS-L for the IEISS output.

WEFS-L publishes the IEISS output as a GML FeatureCollection document to NB
topic ‘NISAC/WFS-L.

WMS Server is subscribed to this topic and receives the GML file then cortverts |

to map overlay,

10.WMS Client displays the new model on the map.

Figure 4-12 — Data flow in the IEISS Block

91

Figure 4-12 shows the data flow in the IEISS block. To use the&SIBpplication as
a Web Service we have created a small WSDL wrapper, whkiakesponsible for
receiving the SOAP messages and invoking IEISS code with tees@dcparameters.
First, the NB Subscriber receives the GML model which corresptmdse user’'s
selection on the mapping client. Because the IEISS simulation escuiparticular XML
format the gml2model tool converts the input to this model format. Ansban as the
WSDL engine receives the invocation message the IEISS Siamulains on the data
already received and outputs the result as a shape file whackpscific type of vector
data format. Depending on the input parameters provided the applicatotatzd the

affected geographic area and outputs it in the shape file.

Figure 4-13 — Sample IEISS output generated by th&/MS; The blue region is the affected area

calculated by IEISS because of a possible problemitiv the energy infrastructure.

92

Figure 4-13 shows a sample IEISS output; here the blue regioridgq@affected
outage area. This image is generated by the Web Map Sdexedoped in Community

Grids Lab, see [17, 68, 69] for more information.

4.5.2Pattern Informatics Integration

Pattern Informatics [65, 66] tries to discover patterns given past data ta predic
probability of future events. The process of analysis involves data mining whicldées m
using results obtained from a Web Feature Service. The Web Map Service [69] is
responsible for collecting parameters for invoking the Pl code. These paraaretéhen
sent to an HPSearch [117-120] engine which invokes the various services to start the
flow. The process is diagrammatically illustrated in Figure 4-14. The Code Runne

Service is a sample wrapper service that invokes the Pattern Inforaggticsation.

As shown in the figure, the Web Map Service submits a flow for execution by invoking

the HPSearch Web Service.

Figure 4-14’s steps are summarized below. This is the basic scenario thsd we

for integrating Pattern Informatics, RDAHMM, and other applications.
0. WFS and WMS publish their WSDL URLs to the UDDI Registry.

1. User starts the WMS Client on a web browser; the WME&ntliisplays the available
features. User submits a request to the WMS Server byisgléessired features and

an area on the map.

2. WMS Server dynamically discovers available WFSs that prowedeeasted features

through UDDI Registry and obtains their physical locations (WSDL address).

93

Figure 4-14 - A general GIS Grid orchestration sceario involves the coordination of GIS services,

data filters, and code execution services. Theseeacoordinated by HPSearch.

94

3. WMS Server forwards user's request to the WFS.

4. WFS decodes the request, queries the database for the featdrescaives the

response.

5. WFS creates a GML FeatureCollection document from the da&aleaponse and

publishes this document to a specific NaradaBrokering topic.

6. WMS receives the streaming feature data through NaradaBrglseagreed upon
topic. WMS Server creates a map overlay from the received @diument and

sends it to WMS Client which in turn displays it to the user.

7. The WMS submits a flow for execution by invoking the HPSearch Bétice. This
request also includes all parameters required for execution ofdhpet. The
HPSearch system works in tandem with a context service for aaroating with the

WMS.
8. Initially, the context corresponding to the script execution is marked as "Exgcuti

9. Once submitted, the HPSearch engine invokes and initializ&se(aparious services,
namely the Data Filter service, that filters incoming data reformats it to the
proper input format as required by the data analysis code, andotihe Runner
service that actually runs the analysis program on the minadAléer these services
are ready, the HPSearch engine then proceeds to execute WF8$&Veb Service

with the appropriate GML (Geographical Markup Language) query as input.

10.The WFS then outputs the result of the query onto a predefined topscstidam of
data is filtered as it passes through the Data Filtevicee and the result is

accumulated by the code runner service.

95

11.The code runner service then executes the analysis code on tlaadidt@ resulting
output can either be streamed onto a topic, or stored on a publiclsiatzédeb

server. The URL of the output is then written to the context service by HIRSearc
12.The WMS constantly polls the context service to see if the execution has finished.
13. The execution completes and the context is updated.

14.The WMS downloads the result file from the web server and displays the output.

4.6 Summary

In this chapter we have first discussed the data and applitexeinnteroperability
problems in GIS and presented a Service Oriented Architecture to ansseptbblems.
Although the open GIS standards gain ground and being accepted as thenclmmmats
the lack of a strong application level interoperability framéwisra serious issue for
distributed GIS frameworks. Therefore we have discussed thaprbidem could be
answered by developing Web Services based GIS Grids. We ihplemented a
fundamental OGC specification the Web Feature Service as bedmstig and non-
streaming Web Services and using this service created &f@ISWe have integrated
several scientific GIS applications with our GIS Grid Servieesl proved that this
approach can be used with real-world analysis and simulation ampigancluding the
cases demanding high-performance and high rate data input.

Figure 4-15 shows the interaction of services explained in thiseshdpto major
data services we have developed for archival geographic dat&reasiag and non-

streaming Web Feature Services.

96

Figure 4-15 - High Performance Data Grid for Geograhic Information Systems

The Client communicates with the services through traditional \Selvice
interfaces. The non-streaming Web Feature Service respondsitaretigests via SOAP
messages transferred over HTTP, while the Streaming Web &e2duwice returns the
results over a publish/subscribe messaging system. Both sepvisedes Binary XML
support for encoding the returning XML documents as binary documents for pemfoem
and bandwidth consumption improvements. In the next chapter we explainetimaiag

services and Binary XML integration.

97

Chapter 5
Streaming Web Feature Service and Performance

of the GIS Data Grid

5.1 Introduction

Recent research discussed that SOAP is not an efficient sdlotibigh-end data
transport [121-124] and there are several ways to improve the W@beSegperformance
[125-134]. One way of improving the performance of a traditional HTTsedaVeb
Service is to incorporate a better transport protocol. AlthougiFHprovides a
universally agreed upon communication platform for Web Servicebast serious
limitations in terms of providing support for larger payload trassérd high rate data
exchange. Later becomes especially apparent in the real-timeapreal time systems
with the use of SOAP envelope which increases the message @izestance [135]

shows that the SOAP protocol increases the message sizelmadigraof four to ten as

98

compared to the binary representation. Therefore a second areathé@erformance
increase can be gained is to decrease the size of the SOAP messagk payloa

Our Web Service based implementation of the OGC Web FeaturgceSer
Specification gave us a chance to make extensive tests to iateghg limitations of
Web Services in both of the areas mentioned above. Essentiallyp &&d&uires Service
provides a unified front for accessing different data storestieve geo-spatial feature
data as Geography Markup Language (GML) formatted documentdiawe initially
implemented the Web Features Service as a traditional Welt&earhich returned the
requested GML responses as strings embedded in the SOAP envelopeeHour tests
have shown that memory related issues limited the amount omafen we could
contain as in-memory strings. On the other hand we also knew that smemific
applications require fast access to large amounts of geogmgiaicThese conclusions
led us to the development of a streaming version of the Web Feature Service.

Our Streaming Web Feature Service has a WSDL end-point whashdps the
same operations with the non-streaming version, however additionaliy iemploy a
topic based publish-subscribe system to stream out the GML rewstkad of sending
them as SOAP messages over HTTP.

We chose NaradaBrokering to provide streaming capabilities. Nam@gd=ihg is a
topic based publish/subscribe messaging system which provides | sewpoatant
features appropriate for our use cases. Some of these propegtiezplained in [136]

and we summarize them here:

99

The communication with NaradaBrokering is asynchronous; this ismportant
feature where the time interval between request and responsegisahd this
property allows non-blocking interaction between clients and the WFS.
NaradaBrokering supports large client configurations publishing agessat a
very high rate and there are no restrictions placed by the brokéearmumber,
rate or the size of the messages issued by the clients.

Entities can specify Quality-of-Service (Qo0S) restraintdhmnmessage delivery
such as reliable delivery of the messages, exactly-once geét@r The broker
allows entities to retrieve event issued during an entity’s absence.
NaradaBrokering also provides fragmentation/coalescing sefeicéarge data
transfers. This service breaks the large files into managi&agleents, publishes
the individual chunks. On the receiver side, these chunks are written in a
temporary storage area, and once it is determined that a@htimks are retrieved
all fragments are coalesced into a single file.

Additionally NaradaBrokering provides capabilities for communicatimgugh a
wide variety of firewalls and authenticating proxies.

In short using NaradaBrokering in our system gives us enormous flexibitéyms
of supporting arbitrarily large message sizes and high traregfs. Our previous tests
show that by streaming the GML documents over publish/subscribe basshgimg
broker we make significant performance gains.

In this chapter we report the results of our research effoffigrtteer improve the
performance of the Web Features Service by incorporatingrBiXML frameworks. It

should be noted that these improvements can be applied to other Web Services as well.

100

Related research shows that SOAP message transfer over RAS Enherent
problems. One of these problems is the SOAP header that needgdadierred along
with every message embedded in the SOAP body. Considering thitedamost of the
time Web Service clients make more than one requests frometker st becomes
obvious that the same header will be redundantly exchanged with evesggadetween
the server and the client. One way to overcome this redundancyaietthe header only
once in a third party online repository accessible to both the Weix&eserver and the
client [130]. The header may be put to this repository by the rsamv@ client may
request it at the beginning of the transaction to process the incoming messages.

Another possible performance improvement can be made by reducisgehef
the data payload or the SOAP body section. XML is the universabfdonthe message
exchange in Web Services. However one significant drawback of NHeetcoding is
that it increases the size of the raw data.

In recent years several binary XML frameworks have been develapéeip
reduce XML document sizes [137]. In September 2003 The W3C ran a workshop t
study methods to compress XML documents, comparing Infoset-levelseapagons
with other methods. The goal was to determine whether a W3C Workoup @&ight be
chartered to produce an interoperable specification for such a tssiemiormat [138].
The W3C has formed The XML Binary Characterization Working Graip aesult of
this workshop [139]. Although the workshop concluded that there should be fandker
in this area to decide if W3C should attempt to define formatsetihods for non-textual
interchange of XML many independent groups or individuals developed kbirsay

XML formats such as Fast Infoset [134], XBS [140] and BNUX [141R005 W3C has

101

released a Working Group Note which includes an analysis of whigenies a binary
XML framework must possess and recommends that W3C produce a DiNdry
recommendation [126].

Depending on the content of the XML document these binary framewaukdiyus
achieve significant compression rates which can be very usefacomalishing very
good transfer times. However the encoding and decoding of the Xisly introduce
significant overheads as well. Therefore the advantages and dis@saotaach binary
XML framework must be studied for each type of the data.

We have made several tests to investigate possible perfornmape®/ements to
our Streaming-Web Feature Service by using two major binary Xtdmeworks,
namely Fast Infoset and BNUX. Additional tests will be madth whe non-streaming
Web Feature Service to see if any improvements can be made hisary XML

encodings in a traditional Web Service usage..

5.2 Streaming Web Feature Service

The Web Feature Service provides access to geographic informatiea $h
various distributed databases. The data is encoded as GML documbius, isva
popular XML dialect for describing geospatial entities. The &inreg- Web Features
Service has a WSDL document to describe the operations it ssypwbith is used by
the client to send feature requests. Essentially the cligoests are made as traditional
Web Service calls, but the responses are transmitted over NaradaBrodeiisg t

Along with the feature request the Client provides the Broker asldned topic

information to the server. The server retrieves the desiredrésafrom the database,

102

converts these to GML and publishes these features to the givenRigpie 1 depicts
this process.

For the performance tests we use Southern California Earthquatiee @2nter’s
(SCEDC) seismic data records from 1932 to 2005. In GML terms datlese records
are considered a geographic feature and represented in the GML dbcasna&n

individual<gml:featureMember > element with attributes and sub-elements as following.

<gml:featureMember

xmins:gml =" http://www.opengis.net/gml ">
<SeismicEvent >
<Date >

<Year >1992</ Year >
<Month >4</ Month >
<Day>15</ Day>
</ Date >
<Time>
<Hour >6</ Hour >
<Minute >51</ Minute >
<Second >17</ Second >
</ Time >
<Location >
<gml:Point srsName ="SRS>
<gml:coord >
<gml:X >34.291 </ gml:X >
<gmlY >-117.564 </ gmlY >
</ gml:coord >
</ gml:Point >
</ Location >
<EventType >et </ EventType >
<Magnitude >3.47 </ Magnitude >
<MagnitudeType >n</ MagnitudeType >
<Depth >7.2 </ Depth >
<Quality >B</ Quality >
<NPH-16</ NPH
<NGRM26<NGRM
<Eventld >2038429 </ Eventld >
</ SeismicEvent >
</ gml:featureMember >

A GML document usually consists of several such feature memimside a
</gml:FeatureCollection tag.

The Web Features Service retrieves the features from thieadatén a streaming
fashion, i.e. we use the MySQL streaming query statement prapexgeive individual
qguery results immediately as they become available, insteadhitihg for the whole

103

result set to be created by the database driver. This appropatves the performance
by allowing us to create gml:featureMember elements fon @adividual query result
immediately upon receiving.

Another point where performance gain can be obtained is to find an optimal number of
features to accumulate inside one message before publishing to the broker topig. Usua
the clients request multiple features in one query. The WFS may choose ¢cacreat

broker event for each gml:featureMember element and publish these to the dyaker t

or may choose to publish multiple gml:featureMember elements as one broker event

Figure 5-1 - Streaming Web Feature Service Performare Test Setup

Figure 5-1 shows the data flow in the performance test setupislsdenario we
measure total response time, publish, subscribe and transfer times.
Twota =T puo + T wanster + T sub
The timings taken in this scenario are intended to find out the lootioms of
publish, subscribe and transfer times to the overall performande &ystem, because
these are the parts of the system which will be affectdéd tive addition of a binary

XML framework.

104

The request-response cycle starts with the client making Be&etre request
through WFS-Server's WSDL interface. The server decodes thisagescreates a
MySQL query and queries the database. Every individual query resulined is
converted to GML and published to the broker topic. However the total nuafber
features in the response affects the overall performance thiedeansfer time will be
changed according to the size of the message. We testdieensfor various message
sizes, by increasing the number of features included in each message tasteegubl

The individual messages published by the WFS-Server are partSMt deature
Collection document, hence essentially are XML fragments. And becaeasstream
these fragments through a broker topic without embedding in a SD¥éope we can
easily test the effects of using a binary XML frameworkdmgctly converting these
XML documents into a binary format.

A self-contained binary XML framework has two major parts, atodar which
using a particular algorithm converts the text based XML documsnt a binary
document, and a decoder which reads the binary document and reformats it to thle origina
XML input. The most obvious reason for using such a framework isceimgression.
Depending on the type of the data the compression rate is usuallfigar (See table
below). This in turn allows us to use less network bandwidth and bettesfer times
which means higher performance.

However encoding an XML document into binary and decoding it back to XML can
be CPU intensive and time expensive operations. We must carefidlyage each
framework to see if we lose more time with encoding and decdbargwhat we gain

from the transfer by decreasing the size of the message.

105

Figure 5-5-2 shows how we can integrate a binary XML framlewath our
streaming Web Feature Service. In addition to the Streaming WWaluré Service
scenario discussed above we now have a Binary Encoder unit on the sséewhich
converts the GML fragments into binary documents and a Binary Deoadie Client
side which receives these binary documents, converts back to XWilgiaas to the

client process.

—owns

GML NB NB Client

A\

-+ > |« -+ | +—p
Tbin-pub Tpub | Ttransfer Tsub Tbin-sub
'to 't1 'tz t3 t4 tS t6 t7

Figure 5-5-2 - Streaming Web Feature Service integtad with a Binary XML framework.

In this case we take additional timings to measure the treet gluring encoding
and decoding steps. In this scenario the total time is the sathstéps described in the
first step plus the binary encoding and decoding times:

Ttotal =T bin-pub +T pub +T transfer +T sub + T bin-sub

5.3 Performance Tests

As depicted in Figure 5-1, the test scenario starts withothiding of the GML
Feature Collection object using the results obtained from the datdkigare 5-3 shows

the message creation time for various GML document sizes. & call times are

106

not included in the following figures since these are almost aunstues for all

gueries. The database query time is also included in this figure.

Web Feature Service GML Creation Time

3,000

2,500 -

2,000

1,500 / /
1,000 //
500

/

500 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000
Number Of Features

Time (ms)

—— GML Creation Time

Figure 5-3 — Web Feature Service GML Message (GML Fure Collection) creation times as a

function of number of the features in the message

We test the performance of the system by publishing various GMinuerats from
the WFS Server and measuring the total time it takes to tratfefewvhole file to the
client. To understand the behavior of the system for smaller aret datp transfers we
use two different groups of files. The first group contains 10 GML dootsnwith sizes
between 10KB to 100KB. The second group contains 11 files with lseteeen 500KB
to 6MB, with the number of features contained in these files asarg from 500 to

10000. The WFS Server publishes the GML documents in increasing size order.

Table 5-1 Size comparison of the documents usedtime tests as textual XML files and as compressed

binary formats

Number Document Size (KB)
Oof
Features XML BNUX Fast Infoset
100 61 24 24
500 300 75 70
1,000 600 148 139

107

2,000 1203 302 281
3,000 1805 482 422
4,000 2406 606 563
5,000 3036 758 704
6,000 3609 901 836
7,000 4210 1056 986
8,000 4817 1257 1129
9,000 5417 1483 1274
10,000 6018 1623 1402

Document Sizes
For Different Encodings

7000
6000

5000 /
4000

3000 /

2000 /

1000 / é.:’:

File Size (KB)_

100 500 1,000 2,000 3,000 4,000 5,000 6000 7,000 8000 9,000 10,000
Number Of Features in the File

‘—.—xvvu_ File —s— BNUX File —a— Fast Infoset File ‘

Figure 5-4 - Document Sizes for different encodings

Table 5-1 shows the size of the GML files and binary documents ngbéd tests.
Document sizes are reported as kilobytes. Figure 5-4 depictalties reported in Table
5-1.

To measure the effects of using binary XML frameworks we ttestsystem by
publishing these GML documents in textual, Fast Infoset and BNgXdts. The files
are published in two groups with the first 10 files representindlenm@ayloads up to
100KB, while the second group of 11 files representing larger paylbatise tests we
publish each file for 50 times and calculate the average and statelaations which are

shown in the figures below.

108

To understand the effect of the network distance between the bttogrublishers
and subscribers we use three different NaradaBrokering semvensng at different
cities. We run the WFS-Server and the Client at our local GmaFservers in
Bloomington, Indiana. This ensures the similar performance in &eéttest cases for
binary XML processing steps, encoding and decoding the documentspicalty

GridFarm server specs are given in Table 5-2.

Table 5-2 — GridFarm008 Machine configuration summay

Processor Intel® Xeon™ CPU (2.40GHz)

RAM 2GB Total

Bandwidth 100Mbps

Operating System GNUY/Linux (kernel release 2.4.22)

Java Version Java 2 platform, Standard Edition (1.5.0-06)

Table 5-3 - Test Cases

Test Case 1 - NB Server in Bloomington, IN
1l.a Textual XML Transfer Performance
1.a.1 Small Files
1.a.2 Large Files
1.b BNUX Integration Performance
1.b.1 Small Files
1.b.2 Large Files
1.c Fast Infoset Integration Performance
1.c.1 Small Files
1.c.2 Large Files
Test Case 2 - NB Server in Indianapolis, IN
2.a Textual XML Transfer Performance
2.a.1 Small Files
2.a.2 Large Files
2.b BNUX Integration Performance
2.b.1 Small Files
2.b.2 Large Files
2.c Fast Infoset Integration Performance
2.c.1 Small Files

109

2.c.2 Large Files
Test Case 3 - NB Server in La Jolla, CA

3.a Textual XML Transfer Performance
3.a.1 Small Files
3.a.2 Large Files

3.b BNUX Integration Performance
3.b.1 Small Files
3.b.2 Large Files

3.c Fast Infoset Integration Performance
3.c.1 Small Files
3.c.2 Large Files

5.4 Performance Test Results

54.1LAN Tests

In this configuration the WFS and NaradaBrokering servers and E& ®lent run
on GridFarm servers, shown in Figure 5-5. Since the test componants rilhe same
servers and share the same file system, this is thesitigation in terms of data transfer

time.

Figure 5-5 Test Configuration for the first case

110

5.4.1.1 Streaming WFS Performance with Textual XML Transfer

The first test measures the data transfer time on theorlefar exchanging textual
GML documents which includes publish time on the server side; retiereeon the
client side and actual wire transfer time. Figure 5-6 and Figiateshows the test results

for smaller and larger data sizes.

Table 5-4 - Average XML transfer times and standarddeviations

Number | Average | Standard Number | Average
of Transfer Deviation of Transfer Standard
Features | Time (ms) Features | Time (ms) | Deviation
10 3.00 1.23 500 19.14 5.03
20 3.86 1.45 1,000 35.26 3.23
30 3.68 1.25 2,000 71.90 9.65
40 492 115 3,000 108.66 10.00
4,000 146.50 13.53
S0 4.86 1.01 5,000 198.24 24.88
e 5.18 ik 6,000 245.08 26.14
70 5.38 1.03 7,000 284.24 24.07
80 5.60 0.99 8,000 326.10 35.42
90 6.12 0.94 9,000 346.74 36.03
100 7.34 1.21 10,000 414.34 63.00

111

NB Transfer Times
TCP / XML
NB Server @ Bloomington

Time (ms)
w e

10 20 30 40 50 60 70 80 90 100
Number Of Features

‘ —&— Average —#— StDev ‘

Figure 5-6 Average transfer times and standard deations for small payloads

NB Transfer Times
TCP / XML
NB Server @ Bloomington

500

400 »

300

Time (ms)

200

100

500 1,000 2,000 3,000 4,000 5,000 600 7,000 8000 9000 10,000
Number Of Features

‘ —e— Average —#— StDev ‘

Figure 5-7 Average transfer times and standard dewtions for larger payloads

112

The total time shown in the graphs is the accumulation of thregarmnts:
publish, subscribe and transfer times. The WFS-Server readdethetdi memory and
gives to the publisher class; this operation is very fast andgri@glin comparison with
total time showed in the graph. The publish time is the amount ofittialees to publish
the in-memory file bytes. Second component is the time spent on the client sickie re
the published bytes and create a complete in-memory represeitatien XML object.
Third component is the time spent to transfer the file bytes from server taetite cl

As can be seen from the graphs the timings show an expectedneeariicrease,

since the actual size of the published data increases linearly.

5.4.1.2 Streaming WFS Performance with Fast Infoset
Integration

One of the major binary XML frameworks under development todagusi’s
ASN.1 based Fast Infoset project [134]. We used Fast Infos&stothe scenario
described in Figure 5-6. In addition to the network timing desdrdbove we measure
encoding and decoding costs required to convert XML documents to Fasetinf
documents and vice versa.

Table 5-5, Table 5-5 and Figure 5-6 and Figure 5-6show the avemsiggstiand

standard deviations for Fast Infoset encoding, decoding and network transker tim

Table 5-5 - Average timings for Fast Infoset procesing and network transfer times, small files

Nurg?er Average Timings Standard Deviation

Features | Encoding |Network Decoding Total Encode Network Dec oding | Total
10 3.00 6.00 3.00 11.00 2.65 1.17 1.64 4.12
20 2.00 7.00 3.15 12.15 2.36 1.65 1.79 4.32
30 2.60 6.60 3.70 12.90 0.60 0.99 0.98 1.37

113

40 2.90 7.10 4.25 14.25 0.85 1.48 0.91 1.86
50 4.30 7.35 5.00 16.65 1.08 1.90 0.79 1.63
60 5.05 7.65 5.10 17.80 157 1.18 0.31 1.96
70 5.05 7.75 5.70 18.50 1.57 0.79 1.13 2.09
80 6.00 8.65 5.45 20.10 0.65 1.50 0.51 1.83
90 6.85 8.40 6.10 21.35 0.67 0.60 0.55 0.99
100 7.20 9.20 6.35 22.75 1.06 1.85 0.67 1.92

Streaming Data Transfer
with Fast Infoset Integration

25
2 /(

) //
) /(
./.\'_/.*._./.\./.

10 20 30 40 50 60 70 80 90 100

Time (ms)

Number Of Features

‘ —e&— Encoding —#— Netw ork Time =—#— Decoding =—>¢— Total ‘

Figure 5-8 - Streaming WFS performance with Fast Inbset integration, small files

For small data sizes the network time is the dominant fastdhé total time, while
the encoding and the decoding processes take similar times afidrghman the transfer

time.

Table 5-6 - Average timings for Fast Infoset procesing and network transfer times, large files

Nug?er Average Timings Standard Deviation
Features | Encoding |Network Decoding [Total Encode Network Dec oding | Total
500 23.68 9.98 20.58 | 54.24 3.98 1.62 2.93 6.16
1,000 43.56 13.48 38.48 | 95.52 1.51 1.87 2.87 3.50
2,000 89.26 18.96 75.40 | 183.62 2.59 2.20 1.47 4.10
3,000 135.94 24.54 108.76 | 269.24 2.85 7.45 2.38 7.77
4,000 182.34 33.18 149.02 | 364.54 6.26 10.07 10.68 | 15.03
5,000 229.24 36.32 178.80 | 444.36 5.67 5.68 8.04 | 10.32

114

6,000 318.52 47.32 217.00 | 582.84 9.13 9.09 11.20 | 14.79
7,000 348.54 50.36 272.70 | 671.60 9.13 9.09 11.20 | 14.79
8,000 394.34 54.32 308.14 | 756.80 14.08 6.74 8.08 | 15.68
9,000 445.76 60.32 345.40 | 851.48 16.00 12.75 6.07 | 20.15
10,000 491.34 66.50 378.16 | 936.00 13.46 12.24 259 | 17.55

Streaming Data Transfer
with Fast Infoset Integration

1,000.00
900.00
800.00 /
700.00 | //
600.00
500.00 / "
400.00 / /
300.00 / r/;/‘/‘
200.00 /

100.00 -

Time (ms)

0.00 -

500 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8000 9,000 10,000
Number Of Features

‘ —&— Encoding —#— Netw ork Time —— Decoding —¢— Total ‘

Figure 5-9 - Streaming WFS performance with Fast Inbset integration, large files

Figure 5-6 shows that as the data size grow the Fast Infosediag and decoding
times also grow significantly larger than the transfer timieich displays a small
increase. The total time shows near-linear characteristause of the linear payload
size increase. The performance in this case is dominated for all dathyseresoding the
Fast Infoset documents on the server side. The network time does noa maar

contribution to the total time since the actual network path is almost zero.

5.4.1.3 Streaming WFS Performance with BNUX Integration

The second binary XML framework we tested is BNUX [141], anresite of the

NUX — An XML processing framework designed especially to bedus high-

115

throughput XML messaging middleware such as large-scale R&&etoinfrastructures,
message queues, publish-subscribe and matchmaking systems etc. [142].

Table 5-5 and Figure 5-6 show the test results for small and large data payloads

Table 5-7 - Average timings for BNUX processing andetwork transfer times, small files

Nurg?er Average Timings Standard Deviation

Features | Encoding |Network Decoding |Total Encode Network Dec oding | Total
10 1.35 3.00 1.75 6.00 1.23 0.50 0.64 1.40
20 1.00 4.55 1.50 6.10 1.28 0.50 0.99 1.76
30 1.40 4.80 2.00 8.20 1.05 0.52 1.30 1.70
40 2.05 5.35 2.25 9.65 1.32 0.59 0.79 1.69
50 3.05 5.70 2.60 11.35 1.36 0.57 0.82 1.31
60 3.55 5.80 2.95 12.30 0.60 0.62 0.69 1.08
70 4.20 6.15 3.35 13.70 0.52 0.37 0.81 0.86
80 4.75 6.50 3.65 14.90 0.79 0.95 1.09 1.52
90 5.75 6.85 3.70 16.30 0.55 0.67 1.13 1.08
100 6.75 7.35 3.40 17.50 1.12 0.59 1.85 2.50

Streaming Data Transfer
with Fast Infoset Integration

20

18

Z— W

10 20 30 40 50 60 70 80 90 100

Time (ms)

Number Of Features

‘—o— Encoding —#— Netw ork Time =& Decoding —>¢— Total ‘

Figure 5-10 - Streaming WFS performance with BNUX itegration for small payloads

As in the Fast Infoset case the dominant contributor to the totalfor small data
sizes is the network transfer time, while encoding and decoding stepssakieie.

116

Table 5-8 - Average timings for BNUX processing andetwork transfer times, large files

Nurg?er Average Timings Standard Deviation

Features | Encoding |Network |Decoding [Total Encode Network Dec oding | Total
500 27.14 9.98 11.06 | 48.18 6.60 2.09 7.88 | 14.80
1,000 49.20 13.48 16.36 79.04 2.35 1.40 6.51 6.69
2,000 100.74 18.96 34.30 | 154.00 7.66 2.36 15.13 | 18.84
3,000 152.40 24.54 55.50 | 232.44 3.99 8.70 26.88 | 29.27
4,000 199.22 33.18 70.52 | 302.92 8.77 17.68 2471 | 29.21
5,000 250.26 36.32 122.64 | 409.22 6.18 10.87 37.96 | 47.21
6,000 296.46 47.32 184.78 | 528.56 8.80 26.46 66.31 | 68.02
7,000 347.84 50.36 156.74 | 554.94 20.70 9.04 60.74 | 68.23
8,000 395.62 54.32 308.06 | 758.00 9.53 58.39 86.41 | 75.19
9,000 446.12 60.32 381.70 | 888.14 12.03 95.56 92.85 | 134.24
10,000 501.74 66.50 370.82 | 939.06 18.08 47.78 84.70 | 86.64

Streaming Data Transfer
with Fast Infoset Integration

1,000.00
900.00

800.00 1 /
700.00

600.00 /

500.00 1

400,00 1 /
300.00 / / /A/‘_\‘

200.00
- M—'—'—a
0.00 - T T T r r r r r r r

500 1,000 2,000 3,000 4,000 5000 6,000 7,000 8000 9,000 10,000

Time (ms)

Number Of Features

‘—0— Encoding —#— Netw ork Time —#— Decoding —<— Total ‘

Figure 5-11 - Streaming WFS performance with BNUX itegration for larger payloads

Figure 5-6 shows that the behavior of BNUX framework is sintdafFast Infoset
for larger data sizes too. Here the encoding step is longer tisadieg and the network

transfer time. The total time is also very similar to Fast Infoset cas

117

5.4.1.4 Performance Comparison of Three Encodings

Here we compare the three test cases outlined above. Theafesiscthe pure
XML transport the second case showed the results with Fastelnihtegration, and the

third case is the BNUX integration case.

NB Transfer Time Comparison
TCP
NB Server @ Bloomington

25

20 /

Time (ms)
= =
o u

- e "

10 20 30 40 50 60 70 80 90 100

Number Of Features

‘—O—XML—I—BNUX—n—FI‘

Figure 5-12 - Total processing times for differenXML encodings, small files

NB Transfer Time Comparison
TCP
NB Server @ Bloomington

Time (ms)
g
\

g

1,000 2,000 3000 4,000 5000 6000 7000 8000 9,000 10,000
Number Of Features

‘—0—)<ML+BNUX—-—FI‘

Figure 5-13 - Total processing times for differenXML encodings, large files

118

The graphs show that because of the expensive binary encoding and decoding
processes the two binary XML frameworks add significant overlettetsystem, hence
the textual XML transfer performs much better. This is alsotdubke fact that the tests

are executed in the local network which causes the transfer times to beamini

5.4.1.5 Fast Infoset, BNUX comparison

Figure 5-6 and Figure 5-6 show the performance comparison of twioy b{iheL
frameworks in first test case for different data sizes. giaphs show that BNUX have
demonstrated better performance for the smaller files whit¢ Ffoset has superior
performance for the larger data sizes. The difference becores obvious after the

number of features in the file are larger than 1000.

BNUX - Fast Infoset Comparison
NB Server @ Bloomington

Time (ms)
N

10 20 30 40 50 60 70 80 90 100
Number Of Features

‘—0— BNUX-Encoding —#— BNUX-Decoding —#— FI-Encoding =« F-Decoding ‘

Figure 5-14 - Performance comparison of Fast Infosend BNUX frameworks, small files

119

BNUX - Fast Infoset Comparison
NB Server @ Bloomington

600

500

400

300

] /./-_/
- %
0 -+ T

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

Time (ms)

Number Of Features

‘—o— BNUX-Encoding —s— BNUX-Decoding —a— Fi-Encoding —+<— FI-Decoding ‘

Figure 5-15 - Performance comparison of Fast Infos@nd BNUX frameworks, large files

5.4.2WAN Testing |

In this test configuration the WFS server and the WFS Clierg war on gridfarm
servers, while the NaradaBrokering Server run on complexity.ucsimd@du at

Indianapolis, Indiana.

Figure 5-16 - Test Configuration for the second ca&s NaradaBrokering Server is in Indianapolis.

120

5.4.2.1 Streaming WFS Performance with Textual XML

Transfer

Table 5-5, Figure 5-6 and Figure 5-6 show the average netwoeksjr@nt for
transferring textual XML documents between WFS-Server, Nara#taBng Server and

the Client, and the standard deviations.

Table 5-9 — Average XML transfer times

Number Average Standard Number Average Standard
of Transfer Deviation of Transfer Deviation
Features | Time (ms) Features | Time (ms)
10 8.65 2.06 500 47.20 13.89
20 12.65 1.84 1,000 94.40 25.81
30 12.85 1.69 2,000 197.65 31.58
40 13.05 1.79 3,000 300.35 25.46
- 1500 L0 4,000 381.55 28.62
5,000 473.10 26.83
a 15.25 LD 6,000 546.35 22.94
70 17.10 141 7,000 671.70 41.14
80 18.85 1.95 8,000 747.60 39.44
90 19.05 1.32 9,000 793.15 44.10
100 20.00 1.00 10,000 857.85 46.32

121

NB Transfer Times
TCP / XML
NB Server @ Indianapolis

20 M
18
16 /_/
14
_ ——
g 12 /
< 10
ol
6
2]
T "= 5
0 ‘ ‘ ‘ ‘ ‘ ‘

10 20 30 40 50 60 70 80 90 100
Number Of Features

‘—Q—Average —a— StDev ‘

Figure 5-17 - Streaming WFS timings for XML data exbange, small files

Because the distance between publisher, subscriber and the brokernrsgreased
from the first test case where all of the components werenrtime local network, the
average transfer time increases to between 8ms and 20 ms svimetka previous test
case it was between 3ms and 7.5ms.

We see the network distance effect more clearly in FigeBe tere the transfer

times of the larger data files doubles in comparison to the local networkgest ca

122

NB Transfer Times
TCP / XML
NB Server @ Indianapolis

900

800 /
700 /

600 /

500 /

400 /

300 4 /

200

100 /

500 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

Time (ms)

Number Of Features

et Average =—s=— StDev

Figure 5-18 - Streaming WFS timings for XML data exbange, large files

5.4.2.2 Streaming WFS Performance with Fast Infoset
Integration

Table 5-5 and Figure 5-6 show the system performance withrfasel encoded

document transfer.

Table 5-10 - Average timings for Fast Infoset proasing and network transfer times, small files

Nurg?er Average Timings Standard Deviation

Features | Encoding |Network |Decoding [Total Encode Network Dec oding | Total
10 4.85 9.75 3.95 | 18.55 2.28 1.02 1.15 221
20 1.95 12.21 3.45 | 17.58 2.68 251 1.73 4.96
30 2.50 12.05 340 | 17.95 0.51 0.89 0.50 1.05
40 2.60 13.40 4.75 | 20.75 0.50 1.64 141 1.80
50 4.45 14.00 5.20 | 23.65 0.60 1.72 0.83 1.53
60 6.20 14.10 5.50 | 25.80 3.02 0.79 0.76 291
70 4.70 17.25 5.85 | 27.80 0.66 2.24 1.18 3.00
80 5.70 16.35 5.75 | 27.80 0.80 1.23 1.02 1.40
90 6.25 18.15 6.05 | 30.45 0.72 2.32 0.51 2.06
100 7.25 17.50 6.75 | 31.50 0.85 1.24 0.85 1.70

123

Streaming Data Transfer
with Fast Infoset Integration

mﬂ/.\./.,—-——r

10 20 30 40 50 60 70 80 90 100

Time (ms)

Number Of Features

‘—0— Encoding —#— Netw ork Time —a— Decoding —«— Total ‘

Figure 5-19 - Streaming WFS performance with Fast Ifoset integration, small files

As the Figure 5-6 shows the use of Fast Infoset encoding introduces a 10ms to 15ms
overhead and since the data transfer time is relativellt #mecauses the total transfer
time to be larger than the textual XML transfer. Howevetliersmall files the encoding

and decoding times are always smaller than the network time.

Table 5-11 - Average timings for Fast Infoset proasing and network transfer times, large files

Nurg?er Average Timings Standard Deviation

Features | Encoding | Network |Decoding Total Encode Network Dec oding | Total
500 25.35 29.50 21.35 76.20 2.70 1.91 2.98 4.26
1,000 50.45 41.00 40.55 132.00 2.09 3.60 1.15 3.61
2,000 102.90 83.50 77.35 263.75 4.41 21.89 169 | 20.24
3,000 214.90 114.70 116.95 446.55 54.70 26.30 11.17 | 61.90
4,000 215.30 136.80 160.30 512.40 34.02 24.97 6.64 | 50.23
5,000 264.75 176.90 192.55 634.20 11.68 35.29 4.77 | 37.64
6,000 314.10 209.75 227.15 751.00 12.91 32.22 6.05 | 31.19
7,000 399.45 238.70 288.60 926.75 91.21 33.07 17.63 | 104.96
8,000 476.90 297.20 349.65 | 1,123.75 133.04 39.53 25.64 | 121.70
9,000 554.40 373.85 371.10 | 1,299.35 116.18 35.94 18.53 | 123.78
10,000 548.20 384.50 401.75 | 1,334.45 39.07 32.05 19.55 | 47.18

124

1,400

Streaming Data Transfer
with Fast Infoset Integration

1,200

1,000

800

600

Time (ms)

400

200 +

500 1,000 2,000 3,000

4,000 5,000 6,000 7,000

Number Of Features

‘—0— Encoding —#— Netw ork Time —#— Decoding —¢— Total ‘

8,000 9,000 10,000

Figure 5-20 - Streaming WFS performance with Fast Ifoset integration, larger files

Figure 5-6 shows an interesting behavior of Fast Infoset framkewhere for large
files the encoding takes more time than decoding. Overall #msfar time is almost
always smaller than the total encoding and decoding overhead andgignificantly
smaller than the textual XML transfer time. However becaus¢h®fencoding and
decoding overhead contributions the total performance is worse thaaxtbal XML

transport.

5.4.2.3 Streaming WFS Performance with BNUX Integration

Table 5-5, Table 5-5, Figure 5-6 and Figure 5-6 show the system penfarmath

BNUX encoded document transfer.

Table 5-12 - Average timings for BNUX processing ahnetwork transfer times, small files

Nug?er Average Timings Standard Deviation
Features | Encoding |Network Decoding Total ncode Network Dec oding | Total
10 2.70 5.30 1.65 9.65 1.49 0.47 1.04 2.62

125

20 1.40 8.20 1.15 | 10.75 2.06 0.89 0.67 2.45
30 1.65 9.45 1.55 | 12.65 1.35 0.83 0.76 1.73
40 2.35 10.35 2.15 | 14.85 0.49 1.53 0.93 1.95
50 3.70 10.70 2.80 | 17.20 1.13 0.80 0.89 1.15
60 4.40 11.45 2.75 | 18.60 1.39 0.51 1.12 1.90
70 4.60 13.60 3.45 | 21.65 0.94 0.75 0.94 1.35
80 6.15 13.50 4.05 | 23.70 0.75 1.00 1.61 2.15
90 6.85 14.40 3.55 | 24.80 0.59 0.82 1.05 1.51
100 7.45 14.55 3.60 | 25.60 0.60 1.36 1.43 1.64

Streaming Data Transfer

with BNUX Integration

30
__—X

25

20

15

_—

Time (ms)

10 +

_—

R

10

20

30 40

50

60

70

Number Of Features

80

90

‘ —&— Encoding —#— Netw ork Time —&— Decoding —>¢— Total ‘

100

Figure 5-21 - Streaming WFS performance with BNUX itegration, small files

In this test the performance of the BNUX integration is sintib the previous test.

Encoding and decoding overheads add to the total time which causesthen®to be

longer than the textual XML transfer.

Table 5-13 - Average timings for BNUX processing ahnetwork transfer times, large files

Nuno1?er Average Timings Standard Deviation
Features | Encoding |Network Decoding Total Encode Network Dec oding | Total
500 29.05 20.20 12.35 61.60 5.02 1.24 3.17 6.11
1,000 52.50 30.85 21.75 105.10 1.47 1.23 8.53 9.10

126

2,000 107.05 59.55 47.40 214.00 5.06 18.67 17.46 | 24.49
3,000 162.85 85.80 77.75 326.40 4.53 3.90 49.36 | 49.98
4,000 216.25 107.85 89.10 413.20 12.34 13.10 27.12 | 29.09
5,000 265.00 126.70 127.75 519.45 4.14 5.28 2435 | 28.54
6,000 321.30 159.90 191.90 673.10 14.43 24.58 72.29 | 78.77
7,000 365.55 185.30 204.30 755.15 21.22 29.40 57.54 | 72.60
8,000 392.00 293.25 337.90 | 1,023.15 13.43 67.53 11485 | 99.41
9,000 436.65 383.35 415.95 | 1,235.95 19.01 92.64 14459 | 196.75
10,000 488.70 463.15 385.00 | 1,336.85 9.09 59.41 100.98 | 106.97

Streaming Data Transfer
with BNUX Integration

1,400
1,200

1,000 /
800

600 /

400 -

Time (ms)

200 -

500 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

Number Of Features

‘ —&— Encoding —#— Netw ork Time —— Decoding —>¢— Total ‘

Figure 5-22 - Streaming WFS performance with BNUX itegration, large files

Figure 5-6 shows that the two binary XML frameworks demonstratelas
performances under same conditions. The BNUX document transfex dioneot show
major increase between Bloomington and Indianapolis servers and théingndime

dominates the total time.

5.4.2.4 Performance Comparison of Three Encodings

Figure 5-6 and Figure 5-6 compare the system performance fordboeenent

encodings in this test case, where we run the NaradaBrokering serveaimajmalis.

127

NB Transfer Time Comparison
TCP
NB Server @ Indianapolis

35
30

25 /‘/.*/.i"ﬁ.*
) /)

g
é 15 . ¢
I
5
0
10 20 30 40 50 60 70 80 90 100

Number Of Features

‘—O—XML —I—BNUX—t—FI‘

Figure 5-23 - Total processing times for differenXML encodings, small files

NB Transfer Time Comparison
TCP
NB Server @ Indianapolis

1,400

o //i7'
- .

600

Time (ms)

400 -

200

500 1,000 2,000 3,000 4,000 5000 6000 7000 8000 9,000 10,000

Number Of Features

‘—O—XNL —=— BNUX +FI‘

Figure 5-24 - Total processing times for differenXML encodings, large files

For the smaller data sizes we see that although the XML AiéXBransfer times
are closer in the first steps the difference grows for teeakthe files and overall the

textual XML transfer performance is better.

128

For the second group of the test files the BNUX and XML file feansmes are
very similar up to 4000 features, however again in this case they M{iMir conversion

overheads cause the integration of these frameworks to increase thenmtal ti

5.4.3WAN Testing Il

In this test configuration the WFS server and the WFS Client rugridfarm
servers, while the NaradaBrokering Server run on one of the sepvevided SIO

(Scripps Institution of Oceanography) at La Jolla, California.

Figure 5-25 - Test Configuration for the third case NaradaBrokering Server is run in La Jolla,

California.

5.4.3.1 Streaming WFS Performance with Textual XML
Transfer

Figure 5-6 and Figure 5-6 shows the total network time spentrdasferring

textual XML documents between WFS-Server, NaradaBrokering Sardeha Client.

129

As the following table and the graphs show that the effect of tt@ndis between
the NaradaBrokering server and the clients is significant. &ttaal XML transfer times

increase by tenfold for both the small and large file transfers.

Table 5-14 - Average XML transfer times, small fils

Number | Average | Standard Number | Average | Standard
of Transfer Deviation of Transfer Deviation
Features | Time (ms) Features | Time (ms)
10 183.30 0.66 500 957.60 167.01
20 186.30 213 1,000 2,204.70 103.23
30 245.85 1.69 2,000 3,787.85 47.07
40 246.65 1.23 3,000 5,554.10 40.53
4,000 7,291.05 43.72
50 252.55 12.70
5,000 9,066.45 39.19
Y 257.70 1B 6,000 | 10,678.10 | 58.11
70 308.25 1.29 7,000 12,487.70 153.52
80 368.25 2.49 8,000 14,317.35 167.96
90 369.45 0.94 9,000 15,940.15 238.70
100 374.95 12.82 10,000 17,572.35 181.22
NB Transfer Times
TCP / XML
NB Server @ La Jolla, CA

400.00

350.00 +

300.00 +
_. 250.00 or——o— *
3 pat
g 200.00 g
= 150.00 +

100.00

50.00
0l -, L o B
10 20 30 40 50 60 70 80 90 100
Number Of Features
‘—O—XNL Transfer —#— StDev ‘

Figure 5-26 - Streaming WFS timings for XML data exbange, small files

130

NB Transfer Times
TCP / XML
NB Server @ La Jolla, CA

18,000.00
16,000.00 1 /
14,000.00
12,000.00 /
10,000.00

8,000.00 /

6,000.00 /

4,000.00

Time (ms)

2,000.00 -

0.00 -
500 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

Number Of Features

‘ —e— XML Transfer —s— StDev ‘

Figure 5-27 - Streaming WFS timings for XML data exbange, large files

5.4.3.2 Streaming WFS Performance with Fast Infoset

Integration

As the Table 5-5, Table 5-5 and Figure 5-6 and Figure 5-6 showhthdtast

Infoset integration significantly reduces the total transfer time.

Table 5-15 - Average timings for Fast Infoset proasing and network transfer times, small files

Nurg?er Average Timings Standard Deviation

Features | Encoding |Network PDecoding Total Encode Network Dec oding | Total
10 8 128 5 141 7 3 2 10
20 3 187 3 193 2 1 1 3
30 3 188 3 194 0 2 0 2
40 3 188 5 195 1 1 1 2
50 4 244 5 253 1 13 1 13
60 5 251 5 261 1 13 1 13
70 5 251 5 262 1 13 0 13
80 6 248 6 260 1 0 1 1
90 7 248 6 261 1 1 0 1
100 23 221 21 266 15 19 15 48

131

Streaming Data Transfer
with Fast Infoset Integration

300
20 /r/—i LLT
200

I wl S

0 20 30 40 50 60 70 80 90 100

Number Of Features

e ENCOAING el NEtWOTK TiME e DECOdiNG s TOt Al

Figure 5-28 - Streaming WFS performance with Fast Ifoset integration, small files

The total network time for small files shows that we gain sicaitly by using Fast
Infoset encoding. This is due to the fact that the binary encadidglecoding overheads
are ignorable when compared to the actual data transfer timesigelthe size of the
data is reduced because of the binary conversion the total tréanstefor small files
changes between 141-266ms whereas it was between 183-374ms ual kil

transfer. The average gain introduced by Fast Infoset integration is abait 50m

Table 5-16 - Average timings for Fast Infoset proasing and network transfer times, large files

Nurg?er Average Timings Standard Deviation
Features | Encoding |Network Decoding |[Total BEncode Network Dec oding | Total
500 35 317 31 383 7 2 10 17
1,000 52 477 40 568 5 68 1 70
2,000 103 955 78 1,136 8 54 2 56
3,000 152 1,390 112 1,653 5 66 4 65
4,000 209 1,832 150 2,191 8 68 3 72
5,000 261 2,380 190 2,831 10 171 7 176
6,000 311 2,698 224 3,234 24 68 17 74
7,000 370 3,346 268 3,984 21 52 8 53
8,000 419 3,794 322 4,535 16 39 21 46

132

9,000 484 4,206 363 5,053 31 21 20 38
10,000 536 4,573 392 5,501 28 47 21 45

Streaming Data Transfer
with Fast Infoset Integration

6,000
5,000

4,000 ///./.
3,000

2,000 //.(/./

1,000

Time (ms)

o
o o O
0 P

500 1,000 2,000 3,000 4,000 5000 6,000 7,000 8000 9,000 10,000

Number Of Features

‘—0— Encoding —#— Netw ork Time = Decoding —>¢— Total ‘

Figure 5-29 - Streaming WFS performance with Fast Ifoset integration, large files

Figure 5-6shows that the average data transfer time for filggas much smaller
than the textual XML transfer times. The encoding and decodistg stay at a low level
compared to the network time especially for the large data s.size
The average network time changes between 383ms-5501ms, wheveas ltetween
957ms and 17000ms in textual XML case. The average time gain forhible test is

around 6600ms.

5.4.3.3 Streaming WFS Performance with BNUX Integration

Following tables and the figures show that the results of BNuwéry encoding
integration are very similar to the Fast Infoset case discussed abovall @sereduction
obtained by the binary conversion of the textual XML results in fsogmt transfer time

gains.

133

Table 5-17 - Average timings for BNUX processing ahnetwork transfer times, small files

Nurg?er Average Timings Standard Deviation

Features | Encoding |Network |Decoding [Total Encode Network Dec oding | Total
10 1.90 129.00 2.65 133.55 7.73 14.44 1.69 20.57
20 1.00 185.85 1.35 186.85 1.39 1.35 1.14 1.81
30 0.70 189.40 1.45 191.55 1.26 13.17 0.51 12.97
40 1.65 195.80 2.45 199.90 131 28.79 1.67 30.85
50 2.45 246.60 2.50 251.55 1.15 0.68 0.61 0.94
60 2.75 249.65 3.20 255.60 0.64 13.04 1.06 13.09
70 3.60 261.85 3.25 268.70 1.10 32.71 1.16 32.43
80 4.25 254.05 3.25 261.55 0.72 18.47 0.91 18.33
90 5.10 260.35 3.60 269.05 0.91 24.45 0.88 24.24
100 23.00 251.65 9.75 284.40 30.89 43.44 11.45 77.63

Streaming Data Transfer
with BNUX Integration

300

250

ot::ﬂt‘ﬂt——-ﬁ'é:
10

20 30 40 50 60 70 80 90 100

Number Of Features

[=+—Encoding —e— Network Time ——a—Decoding ——Tota |

Figure 5-30 - Streaming WFS performance with BNUX itegration, small files
This figure shows that the overhead caused by the encoding and decodimg) t
from the binary format are ignorable, the total time is alrabgays equal to the transfer
time. So the use of BNUX framework helps reduce the dataasdédransfer times. The

average gain for the whole test is 49ms.

134

Table 5-18 - Average timings for BNUX processing ahnetwork transfer times, small files

Numb _ I
urgf e Average Timings Standard Deviation
Features | Encoding |Network Decoding Total BEncode Network Dec oding | Total
500 24.80 315.00 10.76 350.56 3.92 11.92 6.53 | 15.30
1,000 47.86 595.40 17.12 660.38 2.18 70.90 6.34 | 71.23
2,000 95.14 | 1,065.18 36.04 | 1,196.36 3.14 102.97 14.64 | 106.92
3,000 146.10 | 1,612.98 60.00 | 1,819.08 3.70 111.07 27.00 | 109.84
4,000 189.88 | 1,960.34 74.66 | 2,224.88 8.20 54.72 25.14 | 63.90
5,000 241.16 | 2,516.32 123.48 | 2,880.96 8.80 138.06 40.97 | 137.93
6,000 284.06 | 3,349.54 184.22 | 3,817.82 6.07 142.25 73.76 | 150.70
7,000 328.05 | 3,509.85 168.65 | 4,006.55 7.47 27.91 106.49 | 112.37
8,000 381.30 | 4,137.25 330.45 | 4,849.00 18.45 94.50 110.76 | 117.93
9,000 418.80 | 4,792.15 402.40 | 5,613.35 7.80 89.99 124.46 | 158.84
10,000 480.95 | 5,183.70 532.85 | 6,197.50 26.75 63.82 161.36 | 203.32
Streaming Data Transfer
with BNUX Integration
7,000
6,000)<
5,000 ///-
’g 4,000 \/‘!(/-/
é 3,000 //.Lf\./

2,000

1,000

500 1,000 2,000

3,000 4,000 5,000 6,000 7,000

Number Of Features

8,000 9,000 10,000

‘—0— Encoding —#— Netw ork Time =& Decoding = Total ‘

Figure 5-31 - Streaming WFS performance with BNUX itegration, large files

The test results for larger data file transfer with BN&R€oding depicted in figure

31 shows the overall system performance gain in comparison to the textual Xidietra

Since the encoding and decoding overheads are ignorable, the perforsndeisemined

by the network time. The average performance improvement fhremtextual XML

transfer is 6879ms.

135

5.4.3.4 Performance Comparison of Three Encodings

Now we compare the results of three test cases discussed akBav&aA be seen
from Figure 5-6, the XML transfer takes more time for most of the files$ admost equal

time for 3 files. The binary encodings help reduce the data transfer timevagrdével.

NB Transfer Time Comparison
TCP
NB Server @ La Jolla, CA

400
350 /’
300

250 -

200 -

Time (ms)

150 -

100

50

10 20 30 40 50 60 70 80 90 100
Number Of Features

‘—O—XM_—I—BNUX—A—H‘

Figure 5-32 - Total processing times for differenXML encodings, small files

NB Transfer Time Comparison
TCP
NB Server @ La Jolla, CA

18,000

16,000 /

14,000 /

12,000

10,000 /
8,000 /

6,000 1 /

4,000

2,000 +

Time (ms)

500 1,000 2,000 3,000 4,000 5000 6000 7,000 8000 9,000 10,000
Number Of Features

‘—Q—XIVL—I—BNUX—i—FI‘

Figure 5-33 - Total processing times for differenXML encodings, large files

136

The real performance improvement is seen in Figure 5-33; whil¥NHetransfer
times follow a linear steep increase, because of the lineegase in the payload sizes,
the binary encoding keeps the increase rate at a lower levér 8w largest test file,
which contains 10000 features Web Feature Service with binary Xiggration
requires around 6000ms, whereas the same number of features wtal &L

encoding takes about 18000ms.

5.5 Summary

In this chapter we have discussed a scenario for testing tioenpance of the most
important component in our GIS Data Grid architecture, the Strgakveb Feature
Service. We show the performance of this service with and withiug bgary XML
frameworks. The results show that there is not much gain witly tisese frameworks
for the local network, and probably for short network distances. Howdwer
performance gain for the long distance data transfer isfisami, over 60% with both
BNUX and Fast Infoset integration cases. The results alsy itm@i although the Binary
XML frameworks can be used for better transfer times amd\ve@th they should only
be used when there is a performance gain. To make this decision a decision mgkule mi
be implemented. This module can be designed based on Case BasewirReapproach
which can pick up best available binary encoding for similar queres network

distances that was recorded in the past.

137

Chapter 6

Real-Time GIS Data Grid

6.1 Introduction

Recent research has discussed that the sensors are changing the wayreveaequi
about various entities. Recent advancements in sensor technologiesssunicro-
circuitry, nano-technology and low-power electronics allowed sensbesdeployed in a
wide variety of environments [21, 22, 143-146]. The trend in this field shusathat in
the near future we will see thousands of sensor nodes being depityer individually
or as part of sensor networks in a large variety of applicationains. Environmental
monitoring, air pollution and water quality measurements, detectitdreafeismic events
and understanding the long-term motions of the Earth crust are dely areas where
extent of the deployment of sensor networks can easily be Saemsive use of sensing
devices and deployment of the networks of sensors that can comtawmitteeach other
to achieve a larger sensing task will fundamentally change iataym gathering and

processing [147].

138

Our work on developing a common Grid infrastructure for Geogrdpfecmation
Systems has led us to the conclusion that this new type of datze seucapable of
producing very large amounts of observational data which potentiallyheipyus obtain
detailed knowledge about the environment we live in. Although the most common type of
geographic data are kept in various types of data stores, eleime sensor
measurements are becoming the dominant type of data sourceshaittagacity to
produce tremendous amount of measurements, which might be more thaditienad
systems can handle in normal operation. For instance Southern Califtegeated GPS
Network (SCIGN) [148] has deployed 250 continuously-operating GPSorstatn
Southern California whereas several hundred non-real time stati@soperating
elsewhere in the United States. The GPS Earth Observation tKket3ystem or
GEONET in Japan consists of an array of 1200 GPS stations thattleeatire country
with an average spacing of about 20 km [149]. These networks afgdeabaroducing
terabytes of measurements per year.

Table 6-1 shows approximate amount of data produced by the Southeorrialif
Integrated GPS Network (SCIGN) real-time GPS stations. Theradisons obtained
from a proxy server are encoded in a binary format called RIY@.table shows the

increase in size for different encodings of the same observations.

139

Table 6-1 —Approximate amount of data produced by SIGN GPS Networks

Message Format
Time RYO ASCII GML

1 second| 1.5KB 4.03KB 48.7KB

1hour |5.31MB 14.18MB | 171.31ME
SDCRTN GPS Network| 1 day 127.44MB | 340.38MH 4.01GB
(9 Stations) 1 month | 3.8GB 9.07GB | 123.3GB

lyear | 45.8GB 119.67GH 1.41TB
(Ezrggigﬁ')ﬁs'\') Network |, ear | 12378 16.18TB | 160TB

However rapid proliferation of sensors presents unique challenge®diffean the
traditional computer network problems. Several studies have discugssetiimological
aspects of the challenges with the sensor devices, such as pmsamgtion, wireless
communication problems, autonomous operation, adaptability to the environmental
conditions, load balancing etc [150] [151] [21]. In this chapter we deseiService
Oriented Architecture termed SensorGrid to support real-tinmenration gathering and
processing from sensors. The architecture supports real+tbegration of sensors with
scientific applications such as simulation, visualization or data mining seftwa

Scientific applications that require processing of huge gata are increasing in
number with the evolution of computing resources, network bandwidth, and storage
capabilities etc. At the same time some of the applicatadeing designed to run on
real-time data to provide near-real time results; such applisaare gaining ground in
systems like Crisis Management [152] or Early Warning Sys{@®s3] [154] because
they allow authorities to take action on time. Earthquake daitaikgsn tools are good

examples of this group since they use data from Seismic orsrs. However, most

140

of these tools currently consume data from repositories and thagtdwave access to

real-time data due to several reasons.

6.2 Real-Time Data Grid Components

In this chapter we present a common Grid Infrastructure for caupdal-time data
sources such as sensors to distributed science tools such ditédidtdata analysis or
simulation applications. The Grid is built around streams createdaamsdimed by filters
and managed by a powerful Grid messaging substrate.

This architecture consists of three major components in addition &etilne sensor
nodes; individual filters that process the real-time data sfeamormation services
which provide the metadata about the filters or filter chains, aimtin®ssaging system,
which provides supports in areas like fault tolerance, notificatiorgvesyg etc. The
filters are run in specific order to achieve particular pgergy goals. This corresponds to
different workflow [155] scenarios in different Grid domains. Theefdtare exposed as
Web Services to allow remote composition of filter chains whisb ahables running
different workflow scenarios. Although we did not study workflowsmyour research,
we note that Grid workflow engines such as Taverna [156] can beasesghte various
workflow scenarios with our filter services.

Overall the Sensor Grid paradigm is similar for differenersttfic domains, the
sensors, filter services, the metadata registry and thent&sdaging support make up the
backbone of the system.

Here we turn our attention to the major parts of the system;

141

6.2.1Filters

Filters in SensorGrid context are data processing applicationglyropsrating in
real-time. Similar to filters in electronics which acceptscesses and outputs certain
types of signals, a real-time software filter accepaasforms and presents messages.
Depending on the task they are designed for filters may be apalications such as
format converters or very complex applications like simulation soéwThey may be
expected to run in real-time by immediately processing anseptiag the results or in

near-real time by accumulating certain amount of data andugxgcthe processing

T T

Figure 6-1 — Simple Filter concept includes a sighgenerator unit, actual data processing

afterwards.

filter unit and the output signal.

The filters in our real-time data Grid architecture have thme&gor parts
corresponding to the three components depicted in Figure 1. Thedimgonent is the
data input unit which is responsible for obtaining the data from theesourcreal-time
data Grid the data sources are sensors, or proxy servers digseiminate the real-time
sensor measurements. The input unit must have the capability t@ acckpresent the
data to the actual filter. The second component is the actual datsgping unit. And the
last component is a data output unit. Depending on the type of the Gutieor
applications, the output unit may be implemented to support various datsfetr

protocols.

142

While designing real-time applications one obvious principle to rdmens the
importance of keeping the data flow from sources to destinatiores &lata processing
in general requires multiple steps. For instance in a most simplisti¢hoae steps would
be required: accessing the data, converting them into applicgemifis formats, and
executing the actual processing. However in real world apmitatmany more steps
might be required to create a data processing flow. Onenemsimber that any kind of
interruption at some step of the flow will disrupt the entire pea@nd possibly cause
major breakdown because in the real-time systems the datkelyeto be streamed
continuously. For this reason it is wise to break down the data pmogespplications
into as many small filters as possible and allow them todsesaed and controlled
through standard interfaces. This approach helps creating rolal$inte data flows
because it allows distribution of the processing components and inintiggrating
failsafe measures. For instance backup services could be usegldoe any failed
services thus allowing keeping the flow alive.

We adopt Web Service approach to create standard control inteidatkes filters.
Every filter in the system implements the same Web Semteeface. The Filter Web
Service interface has capabilities like to start, stop andnegshe filter operations. It
should also provide a unique identifier for each filter, which can b&lufr creating
distributed chains. Another important feature of this service iprtwide metadata

descriptions of the filters.

6.2.2Filter Metadata

Creating distributed systems require successful orchestrationutiple remote

resources. To minimize human interference in this orchestratadeasmportant for fast

143

an accurate operation. However to do this the resources are needvtll lefined.
There must be a standard way for resources to communicate émssfid integration.
Web Services present us a useful way for defining the serdpabdities so that
coupling the resources can be done automatically. In the filters w& also need
additional metadata about each filter for creating filteics. The metadata documents
should contain unique properties of the filters such as its id, input —gefpuitements,
dependencies and a short description of the processing it is responsible for.

In SensorGrid the filters are essentially deployed as Welc8srand in most cases
run in a workflow as part of complex processes. Each filtetesgned to execute a
particular task, which means it accepts and produces certainofypeessages. This
introduces dependencies between the filters. Defining these depesdémca filter
specific metadata document is useful for checking if these depeesi@rne satisfied at
the time of the deployment. This way the users will see whbtbler filters must be
deployed as well.

Figure 6-2 shows the metadata schema for the SensorGridl. fitteshould be noted
that the OGC SensorML [75] specification provides schemas foridiegcthe sensor
metadata and it could have been used here. However because aifiiexdy of the
SensorML schemas and our System’s requirement for providing adtisomama to

describe filter chains we have decided to create a simple schema instead.

144

Figure 6-2 - XML Schema for the Filter Metadata

6.2.3Filter Chains

As described above complex data processing tasks require mulépke &1 our
architecture we use distributed filters for realizing suchpiermtasks. The standard Web
Service interfaces for the filters allow remote creatind management of filter chains.

We also provide base classes for creating new filters aedWileb Services. The filters

145

are deployed successively around a publish-subscribe messagemm sysich federates
the distributed resources and allows hierarchical operation of the filters.

Depending on the type of the processing the filters may baeghan parallel or
serial modes. If the input data can be processed by diffelems fat the same time and
the results of them are merged after these independent proaessasnplete then the

parallel operation is appropriate.

Figure 6-3 - Parallel operation of the filters

Figure 5-6 show the output of the Filter A is shared as inputillsrd=B and C,

while the Filter D merges the outputs from both and does the final processing.

Figure 6-4 - Serial operation of the filters

However in the real-world applications serial operations are rgomhi A filter
requires output from another as input, which also provides its output &uticessive
one as input. Figure 5-6 shows three filters processing sens@agessin serial
connection.

In the larger picture each domain specific Grid would have fpdittier chains. It

is desirable for the Grid services to have access to thedilens at a given time for

146

different reasons. For instance at the time of any serardsj it may be expected from
the SensorGrid to restart all the filter services in someshd@o be able to do this we
need to keep metadata about the running, or potentially useful chainbiss@ason we

have developed an XML Schema for describing filter chains.

Figure 6-5 - XML Schema for the Filter Chains

Figure 5-6 shows elements of XML Schema document for describhmdilter
chains. This Schema imports the filter Schema described abosk.filfar chain has
metadata elements like simple description, name and ID. A chain is composeligem
Links. Each link refers to a filter implementation, which canrb@ked with its unique
ID or by importing its metadata document for the local 8ltemd the WSDL URL for

the remote filters.

147

6.2.4Information Service

SensorGrid services are implemented as traditional WSDL-SOaded Web
Services. In any architecture where several servicegxarected to be used there is a
need for some sort of a registry. The registry is usuapansible for keeping the
endpoint addresses of the services for easy access and manipulabanrdal-time data
Grid architecture we usually run several distributed filters consebtutded because the
services are distributed we have multiple WSDL endpoints forpamntycular real-time
workflow. For these reasons we use a UDDI based InformationcBetwiaccess the
service addresses. More discussion about this Information Servicdecdound in

following references [81-86].

6.2.5Streaming Messaging Support

Most Scientific Applications that couple high performance computimgulation
or visualization codes with databases or real-time data sowgese more than mere
remote procedure calls traditional Web Services has to offer.eTagglications are
sometimes composite systems where some of the components cedpuefrom others
and they are asynchronous, it may take hours or days to complete. Such propertes requir
additional layers of control and capabilities from Web Servichgtwintroduces the
necessity for a messaging substrate that can provide thasefeatures. In the next
section we discuss NaradaBrokering a topic based publish-subs@#saging system
that can provide us several useful capabilities for managing awthgeeal-time

streaming data.

148

It is obvious that in a real-time data Grid the top priorityoid¢ able to provide
access and process the continuously streaming data. Any kind otiptitan in this
process will result in data loss. To prevent data loss or sipitdylems the messages
should be reliably transferred between the services. Traditdreld Services are
implemented on top of the already existing Web infrastructure,hwdilgo makes them
universal. However HTTP is not appropriate for high-rate data fequirements. For
instance if we want to disseminate real-time messages &Bf® sensors which output
measurements once per second, the latency associated witd Tiewduld be larger
than allowed, especially for long distances. This is also trukarfge scale data transfers.
Therefore a better messaging solution is required for congettia filters and the
sources.

The real-time data Grid architecture is expected to providdipteulusers with
access to multiple streaming data sources. Therefore thensgaiet support many-to-
many interactions. Also since the sensors are always alivecatichuously produce data
the reliability and fault-tolerance of the messaging architecis extremely important.
For these reasons we have studied publish-subscribe based mesyatgnys as our
messaging infrastructure. Our research showed that topic hadeldsh-subscribe
messaging systems can meet our requirements. One strong tandidhis area is

NaradaBrokering, which was explained in 4.4.1.

6.2.6Filter Web Services

We have created a base filter class that provides NaradaBrkmsblisher and
subscriber capabilities. By extending the base filter class fileers can easily be

implemented. We have created several such filters to proeasime GPS messages.

149

The filters receive messages from the NaradaBrokering giagsaniddleware by
onEventfunction. Processed messages can be published to a NaradaBrokegngytopi
usingpublishDatafunction. These are the only two functions required to connect a filter
to the messaging system. By aggregating several sucls fileercan create an assembly
line that takes the raw data and process it along the way.

The base filter class also provides two methods to starttapdrslividual filters.
startFilter andstopFilter methods use Java Reflections API to invoke and stop any filter
that extends the base filter class. New filters that extemétilter class must implement a
constructor with two arguments; the first argument is a StAngy with 5 string
elements. These arguments are used to initialize the NaaigaiBg subscriber and
publishers. The second argument is another array of stringsaupadst the filter specific
arguments.

For instance, following are the arguments used to staryttZasciifilter:

String siteName = “GLRS”;

String]] args_1 = ["niotcp"”,"gf2.ucs.indiana.edu","3045",
"ISOPAC/GPS/OCRTN/ASCII","/SOPAC/GPS/OCRTN/ASCII/" + siteName];

String[] args_2 = [siteName];

The first set of arguments is NaradaBrokering specific:nraamcation type, server
address, port number, topic to subscribe and topic to publish. Depending opetlod ty
the filter subscriber topic or publisher topic may be null. The secandrent is filter
specific, and in this case contains only one string, name of a GPS Station.

An advantage of creating new filters by extending a base sldiss ability to keep
track of all filters that are currently initialized andtiee. The base class generates a

unique ID for every invocation it receives and keeps a hash tablecdmhins

150

‘uniquelDf/filterType’ couples. This unique ID is returned to therusg startFilter
method. The user can pass this unique IBtapFilter method as an argument to stop
that particular filter instance.

There are two possible ways for creating web servicesilterst first, we can
expose individual filter classes as web services however thisothenay introduce
several problems such as keeping track of the Web Service encdg@diesses/URLs for
all filters. The second method is to create a proxy web sethates generic to all filters
extending the base filter class.

By exposing thestartFilter andstopFilter methods of the base Filter class we have
created a proxy Web Service to start/stop filters. Insteadpuafseng individual filters as
Web Services the client need only pass the filter name andedqarameters to invoke
a filter. This approach allows us to use only one service toatantiltiple filters in the
system which can be useful in keeping track of the status of the overall system.

For instance using the above parameters we can staro®esoyi filter remotely as

following

FilterWSClient f = new FilterWSClient();
String id = f.StartFilter(
"cgl.sensorgrid.sopac.gps.filters.ryo2a scii”,
args_1,
args_2,
"http://mastar.ucs.indiana.edu:8080/sensorgrid-

services/services/Filter");

Here the first argument is the full name of the filter toirogalized, second and
third argument s are explained above, and the last argument is the filter wed Y&L.
The id returned by thstartFilter method looks like the following string:

52ad94ea-a460-4e5d-b33a-6e9ce6e353ad

151

We use this ID to stop the filter as following:

f.StopFilter("cgl.sensorgrid.sopac.gps.filters.ryo2 pos",
“ 52ad94ea-a460-4e5d-b33a-6e9ceb6e353ad” ,
"http://mastar.ucs.indiana.edu:8080/sensorg rid-

services/services/Filter");

In addition to the control functions, the filter Web Service also pesvanother
function getFilterCapabilities,which can be used to query a particular filter's metadata
description. The filter metadata file, as described above contdorsnation about the
filters such as description, name, dependencies, implementddies etc. The user can
query the filter capabilities by providing full class name,tlee unique ID for active

filters.

Figure 6-6 - Overall SensorGrid Architecture

152

Figure 5-6 shows the overall SensorGrid architecture which contains seitersl fi
for processing, converting or aggregating data streams, NaradaBrokessggimg

system for message transfer and integrated applications.

6.3 Real time Data Grid Implementation for Global

Positioning System Networks

To demonstrate the use of technologies discussed earlier ergdbdeSPS Services
developed for the Scripps Orbit and Permanent Array Center (SPBRS networks
[157]. SOPAC's distributed GPS networks continuously provide publicilable data.
Raw data from the GPS stations are collected by a Common Link (RO server)
and archived in RINEX files. In this section we describe the imeigation of the
aforementioned technologies.

Figure 6-7 displays Plate Boundary Observatory (PBO) [158] &&®ns. As of
August 2006 more than 400 GPS stations are operational (http://pboweb.unavco.org).
Note that these stations are continuously operating and dataeaogigally being
collected however they are not real-time stations i.e. they dgmoeide access to
position measurements in real-time. The data are retrievethade available through

online archives (FTP sites).

153

Figure 6-7 —Plate Boundary Observatory (PBO) GPS &tions in North America; Image is obtained
from SOPAC GPS Explorer at http://sopac.ucsd.edu/mgs.

Figure 6-8 — California Real-Time GPS Network (CRTN. Note the Continuous GPS Stations
(CGPS) are depicted as triangles while the Real-Tienstations are represented as circles. Image is
obtained from SOPAC GPS Explorer at http://sopac.usd.edu/maps.

154

Figure 6-8 displays Real-Time GPS networks in Southern California. The ésang|
represent the continuous GPS stations while the blue and red circles repressait the
time stations. The real-time stations are deployed by the Southern Qaliftegrated

GPS Network (SCIGN) [159] project.

6.3.1Real-Time GPS Networks

Global Positioning System has been used in geodesy to identifydongéctonic
deformation and static displacements while Continuous GPS (CGP$)damn very
effective for measurement of the inter-seismic, co-seismitpost-seismic deformation.
[160]. GPS Stations are effectively independent sensors thatatalend broadcast their
instant geographic positions. They can run for long periods of tmibeut need for
frequent maintenance and can communicate with the data collpciits using various
connection types such as Wi-Fi, modems and phone lines or fiberioisc Today
networks of individual GPS Stations (monuments) are deployed alongctive fault
lines, and data from these are continuously being collected by lsexganizations. One
of the first organizations to use GPS in detection of the seismeicts and for scientific
simulations is Southern California Integrated GPS Network (SCI&ESB]. One of the
collaborators in SCIGN is Scripps Orbit and Permanent ArrayeC¢S8IOPAC) which
maintains several GPS networks and archives high-precision GRSpdaticularly for
the study of earthquake hazards, tectonic plate motion, crustal défommand
meteorology. Real time sub-networks maintained by SOPAC includag@rCounty,
Riverside County (Metropolitan Water District), San Diego Couartyg, Parkfield. These
networks provide real-time position data (less than 1 sec Igtandyoperate at high rate

(1 — 2 Hz). The raw measurements from the GPS sensorsrdaieuously collected and

155

locally stored by a Common Link Proxy (RTD) Server and lataderavailable to public
via FTP sites. The GPS networks provide real-time position degs ffhan 1 sec latency)
and operate at high rate (1 — 2 Hz). The RTD server also lastadeal-time positions in
a proprietary binary format called RYO. Each RYO messag&ams the positions of the
stations that reported for that epoch.

The data collected from the GPS stations are served in various formatewasitpll
RAW: For archiving and record purposes, not interesting for scientific
applications, not available in real-time.

RTCM : Published real-time and no records are kept. This is usef® QM
capable GPS receivers as reference.

Positions Positions of the stations. Updated and presented every second. GPS
Time Series can be produced using these positions and they camifferent
epochs such as hourly, daily etc.

Perhaps the most interesting of these formats for sciergigtssition information
which can be used in scientific calculations, simulation or visatédiz applications. The
RTD server however outputs the position messages in a binary foaiteat RYO. This
introduces another level of complexity on the client side becausedabsages have to be
converted from binary RYO format.

To receive station positions, clients are expected to open a sockeiction to the
RTD server. An obvious downside of this approach is the extensive loadhitis
introduce to the server when multiple clients are connected.

After the RTD server receives raw data from the stations it appliesfatarseand

for each network generates a message. This message contaitkscton of position

156

information for every individual station from which the position dats lbeen collected
in that particular instant. In addition to the position information theme other
measurements in a message such as quality of the measurement, vat@nces

For each GPS network, RTD server broadcasts one position messagecpnd
through a port in RYO format.

To make the position information available to the clients in atim@& streaming
fashion we used NaradaBrokering. Additionally we developed appilisatio serve

position messages in ASCII and GML formats.

6.3.2Chain of Filters

To process GPS sensor streams in real-time we have developeedl $éters and
Web Services to make real-time position messages availaldeemtific applications. In
summary, the core of the system is to implement filteirghthat convert or otherwise
process the incoming data streams. These filters ser@etlasubscribers (data sinks)
and publishers (data sources). NaradaBrokering topics are useghbtize different data
stream sources into hierarchies as shown in Table 6-3. Currenfilgdigeare being used
to support 8 networks with 85 GPS Stations maintained by SOPAC.

In our architecture filters are small applications desigmedeslize simple tasks
such as transforming or aggregating messages. We have developbdtiact filter
interface which can be extended to create new filters. A liiisicis consisted of three
parts: a NaradaBrokering subscriber, a publisher and a data pngcesgi The abstract
filter interface provides subscriber and publisher capabilities.cailpia filter subscribes
to a specified NaradaBrokering topic to receive streamingages, process the received

data and publishes the results to another topic. However outputs nebd abways

157

published, for instance a Database Filter may only receive dherspositions to insert
into the database. Furthermore filters can be connected in parafietial for realizing
more complicated tasks.

The first filters we have developed are format converters pghedgent original
binary messages in different formats since GIS applicaticeguine different
representations of geographic data. Since the data provided bg&V&r is in a binary
format we developed filters to decode and present it in different formats. Oneeeie
the original binary data we immediately publish this to a Na&Baokering topic (null
filter), another filter that converts the binary message to IAS@bscribes to this topic
and publishes the output message to another topic. We have developed alteMha $0
describe the GPS position messages. Another filter applicatiorcrdgss to ASCII
message topic and publishes GML representation of the positiongegsdsaa different
topic. This approach allows us to keep the original data intadiffedent formats of the
messages accessible by multiple clients in a streaming fashion.

The GML Schema we wrote is based on RichObservation type which is an extended
version of GML 3 Observation model [18]. This model supports Observati@y And
Observation Collection types which are useful in describing SOP@gition messages
since they are collections of multiple individual station positiong flow strong
naming conventions for naming the elements to make the Schema more understandable
the clients.

We used Apache XML Beans [161] for data binding purposes and created
application that reads ASCII position messages and generate iGd¥nces using the

code generated by XML Beans. SOPAC GML Schema and sample gsstane

158

available at:http://www.crisisgrid.org/schemadhe GML-OM Schema developed for

GPS station messages and a sample XML output is given in the Appendix.

6.3.3GPS Station Messages and Filters

As discussed above, station messages collected from GPS dtatienseveral sub-
sections. We have developed several filters that simplify or cotiveermessages since
not all the parts of a position message are needed by moss.chémire 6-9 shows the

entire system including the GPS networks, proxy server, filters and the broker.

Figure 6-9 — Real-Time Filters for processing reatime GPS streams
Here we give sample output messages from different filters:
The first filter in our architecture is a null filter whiclorfvards original RYO
binary messages from RTD server to a NaradaBrokering topicoUtpet of this filter is

unreadable binary messages.

159

6.3.3.1 Decoding RYO Messages

RYO Message Type 1 starts with a 5-byte Header which Iswetl by a 47-byte
GPS Position message. Three types of optional blocks may folloRa$ison Message

and a 2-byte checksum is located at the end of the message.

Figure 6-10 - RYO Message Parts

A non-blocking Java Socket connection is opened to RTP server to doWéxt
messages. An RYO Decoder application which uses binary conversiondamavert
RYO messages into text messages is used to receive the raw GPS sessage

Furthermore since we do not expect clients to know about the iGBSarmat we
convert GPSWeek and GPSmsOfWeek values to Gregorian calendat {oena006-
19-07/04:19:44PM-EST). Additionally since we anticipate some clientexjoect
position information in terms of Latitude and Longitude, we -cateulhatitude,
Longitude and Height values from XYZT Position.

The second filter is calledyo2asciiwhich converts RYO messages to ASCII and

publishes to a NB topic. Following is the parts of a message generated biyethis fi

2005-12-12 03:23:16PM-EST LEMA 2 3

160

-2556508.624797094 -4467101.665687391 3754378.93277 0622
2.2950492465819603

36.29202035061081 -119.78237412236496 35.9290886680 37025

L1/L2 Phase XYZ Satellite

0.06901739184684381 0.0377138796649775 0.1083076448 7854985
0.08631783233709235 0.06057192662251049 -0.09281413 763791896 -
0.05338606394765551

127421792476111735723-5447 75045 59755-756247

355472675-142

The message contains following parts:

Message time

Date Time
2005-12-12 03:23:16PM-EST

Station Metadata

Station Station Station Count
Name Number
LEMA 2 3

XYZT Position

X Y Z
2556508.624797094 4467101.665687391 3754378.932770622
T

2.295049246581960

Latitude-Longitude-Height Position

Latitude Longitude Height
36.29202035061081 119.78237412236496 35.929088668037025

Position quality : L1/L2
Flags Phase
Optional blocks present in this messageXYZ variance block + Satellite info block

XYZ variance block

Scale Xvar Yvar
0.06901739184684381 0.0377138796649775 0.[10830764487854985

161

Zvar Y Xvar YZvar
0.08631783233709235 0.06057192662251049 -0.09281413763791896

ZXvar
-0.05338606394765551

Satellite Info Block

Satellite No 1 2 3 4 5 6 1
PRM 2 4 5 7 9 D4 26
PRN Flags 7 7 7 7 7 7 1
Elevat ion 42 61 23 50 55 35 5
Azimuth 179 117 -54 45 -75 54 -142

Ryo2ascii filter converts the whole RYO message and does notdilteanything.
However some of the information included in a position message isagssagyg for most
clients. For instance we have developed a user interface to display the curiteoigobk
the stations on a map. For this particular application we only natoihshames and their
positions in terms of latitude and longitude. For this client interfae have developed
ryo2pos filter which converts RYO messages to simple positiosages. Following is a

sample output message frago2posfilter:

LEMA 2005-12-12 03:58:37PM-EST 36.29202028791537

-119.78237425030088 35.90217063464758

Here we only include Station name, date-time and latitude, longitudien@ght
values in the message. This small application is an example oihdoxdual filters can
be chained using NaradaBrokering to achieve specific tasks. Another exappfitation
integrated using this approach is RDAHMM which only requires XZ¥ar Lat, Lon
Height values for a given station. We can easily write erfitt strip unwanted parts from
the message and output only the position information.

Following table shows information about these networks:

162

Table 6-2 — Real-Time GPS Networks, individual stans and RTD server information

Network RTD Server Address Stdtions

Name

LACRTN 132.239.154.69:5014 vtis, hbco, cvhs, lors,
tabl, ucsb, azul, csdh, dyhs,
vdcy, uclp, citl, lapc

PARKFIELD n/a hogs, pomm, mida, crbt, carh,
land, mnmc, lows, rnch, cand,
masw, tblp, hunt

OCRTN 132.239.154.69:5010 oeoc, cat2, whyt, trak, sacy,
mjpk, scms, sbcc, fvpk, blsa

SDCRTN 132.239.154.69:5013 p486, monp, raap, mvfd, p472,
Sio5,
dvlw, pmob, p480, dsme, oghs

IMPERIAL 132.239.154.69:5012 slms, crrs, usgc, dhlg, glrs

DVLRTN 132.239.152.72:8001 dvle, dvne, dvsw, dvse, esrw,
dvls, dvnw, ese?

CVSRN 132.239.154.69:5015 coma, rbru, lema

RCRTN 132.239.154.69:5011 pin2, widc, kyvw, psap, cotd,

pini,
mlfp, cnpp, bill, ewpp, azry

Following table shows the NaradaBrokering topic names for severadfilter

Table 6-3 NaradaBrokering topics for GPS streams

Network Name

RYO Topic
(null filter Publishes
to)

ASCII topic
(ryoZ2ascii filter
Publishes to)

LACRTN /ISOPAC/GPS/LACRTN/RYO ISOPAC/GPS/LACRTN/ASCII
PARKFIELD /ISOPAC/GPS/PARKFIELD/RYO |[SOPAC/GPS/PARKF IELD/ASCII
OCRTN /ISOPAC/GPS/OCRTN/RYO /ISOPAC/GPS/OCRTN/ASCII
SDCRTN /ISOPAC/GPS/SDCRTN/RYO /ISOPAC/GPS/SDCRTN/ASCI
IMPERIAL /SOPAC/GPS/IMPERIAL/RYO /SOPAC/GPS/IMPERIA L/ASCII
DVLRTN /SOPAC/GPS/DVLRTN/RYO /ISOPAC/GPS/DVLRTN/ASCII
CVSRN /ISOPAC/GPS/CVSRN/RYO /ISOPAC/GPS/CVSRN/ASCII
RCRTN /ISOPAC/GPS/RCRTN/RYO /ISOPAC/GPS/RCRTN/ASCII

Similarly the ryo2pos filter subscribes to the appropriate Rdfiic and publishes

to for instance /SOPAC/GPS/LACRTN/POS topic.

Here we give brief overview for some of the filters we haleveloped for

SensorGrid architecture:

163

ryo2nb Filter: This is a simple message forwarding application that operGPa T
socket connection to the RTD server to receive the RYO mesaadepgublishes to a
NaradaBrokering topic (i.e. “/RYQO”).

ryo2ascii filter: Subscribes to the RYO topic to receive binary messages, converts
them to simple ASCII format and publishes to another topic (i.e. “/ASCII”).

ascii2gml filter: Geography Markup Language is perhaps today’'s most popular
geographic data format produced by OGC. We have developed a GMem&ch
conformant with the latest Observations and Measurements [23] iextdnsdescribe
GPS station messages. This filter converts the ASCII positessages into GML and
publishes to a new topic (i.e “/GML”). We expect that in the rfeture most GIS
applications will be developed to conform to OGC standards and prese@®S
messages in GML will help us easily integrate scientific applications.

ascii2pos filter: The RYO message type contains several sub parts other than
physical position of the station such as position quality and sevelahalpblocks.
However most of this extra information is not required by the agpics. This filter
eliminates optional blocks and unnecessary information from the IA8€$sages to
create concise position messages which only include a time,sséation id and position
measurements.

Station Displacement Filter: One of the use cases of GPS stations is to detect
seismic activities. We have developed a simple filter thatyaeslposition information
of a GPS Station and outputs its real-time physical displaceriéet filter allows
displacements to be calculated based on different time intenelsctual displacement

of the station in last hour or in last 24 hours.

164

Station Health Filter: One advantage of dealing with the real-time measurements
is that we can instantly see if any of the sensors in aonletis not publishing position
information. We have developed this filter which logs the down tiofi¢ise stations and
(potentially) alerts administrator if a threshold value is lmedc For instance it can be
tolerable for a GPS station to be down for a few minutes due to network problems etc. but
if a station has not been publishing position values for over an hoarreermance call
may be required.

Single Station Filter: As mentioned above the original messages imported from the
RTD server contains position information for multiple stations. Howeseme
applications may be required to analyze data for a particaforst For this reason we

have developed this filter to pull measurements from a particular station.

6.4 Application integration Use Case: Coupling

RDAHMM with Streaming Data

The Regularized Deterministic Annealing Hidden Markov Model (RDAHMS58]
[60], is a data analysis program that employs Hidden Markov Mottelidentify
different modes of the system and their probabilistic desonipti RDAHMM has
successfully been used to identify mode changes in GPS times skte With the
development of our real-time GPS data support architecture a memrvef RDAHMM
has been under development to analyze streaming data. Current versairopetwo
phases: Training and Evaluation. In our test case first the appitids trained on a set of

data for a particular station. Then it can be run continuously on acataduata once a

165

pre-determined time window is reached. Although this version icompletely real-
time we can run it near-real time by keeping the time window relativedyl.sm

To integrate RDAHMM with real-time data we have tested tdifferent
approaches. The first one is based on scripting service manadgeynesing HPSearch.
The second method is based on more traditional filter method asedepidtigure 8, by
treating RDAHMM application as another filter. Both of thesehwods are explained

here.

6.4.1RDAHMM Integration using HPSearch

HPSearch [118-120] is a scripting based management interfadetoisnanage
publish/subscribe systems. HPSearch also provides tools to wrapgkistles as Web
Services and provides a scripting based workflow managementaggeto connect
different components of the workflow. HPSearch uses NaradaBrokering's
publish/subscribe based messaging architecture to stream daéeietarious services.
Ref. [25] describes an initial version of RDAHMM using HPSearElgure 6-11
illustrates the architecture for RDAHMM integration. As showthi figure, the system
consists of 3 Web Services, a NaradaBrokering server and an HPSearch node.

The Web Services in this architecture are as follows:

1- DataTransfer Service This service transfers position messages accumulated by
the RDAHMM Filter via NaradaBrokering to the server where RDAHMtally runs.

2- RDAHMMRunner Service: Invokes RDAHMM to run on the transferred data
set.

3- GraphPlotter Service Runs Matlab to plot RDAHMM results as TIFF files and

copies figures to a Web accessible folder.

166

Additionally HPSearch kernel also has a WSDL interface Wwhi used by

RDAHMM Filter to start the flow.

Figure 6-11 — Filter Services and RDAHMM Integratin

The system components are distributed over three servers. RDAHRili# and
Data Transfer Service runs on Server-1. HPSearch kernel and NaradaBro&emmgee
installed on Server-2, whereas RDAHMM application, RDAHMM RunBervice and
Graph Plotter Service run on Server-3. We also run an Apache TovetaServer on
Server-3 to present the generated TIFF images online.

The system uses following real-time filters described aboy@2nb, ryo2ascii,
ascii2pos and Single Station Filter. Additionally the RDAHMMté¥ilsubscribes to a

single station topic to save that station’s position information.

167

The experimental system works as follows: The RDAHMM Fiisea part of the
architecture discussed previously and shown in Figure 6-11. It accemtiat position
messages of a particular station in a file (data.xyz) fareio amount of time (i.e. 10
minutes for 600 lines, or 30 minutes for 3600 lines). Once the timdtides reached it
invokes HPSearch to start the process. HPSearch starts egetwtiscript that defines
the service locations and the order of the services to beitexledt first invokes the
DataTransfer Service to start transferring the data.xgzféated by RDAHMM Filter to
Server-3. Once this transfer is completed HPSearch engio&es RDAHMMRunner
Service and waits until it finishes the evaluation. Then it invokepl@?lotter Service to
read the RDAHMM outputs and plot the resulting graphic. This agctepeated every
time the RDAHMM Filter reaches the time threshold.

For this system we have created a simple application traaadhe RTD server to
publish RYO messages once per second. We used an RYO data egtedaly 13
Parkfield GPS Network sensors for a 24-hour period between 09-27-2004, 06:59:47 PM
and 09-28-2004, 06:59:46 PM. The latest major Parkfield earthquake occurred8n 09
2004 at 10:15:24 AM.

The RDAHMM outputs tell us the number of different states dedectehe input
and information useful for plotting these states. Previous version®AHRIM were
used to analyze archived GPS daily time-series and sugltgsistected state changes in
the inputs which correspond to seismic events.

Our tests show that the real-time filters used in this actite do not introduce
any overhead. Since the GPS messages are received every gas expected from the

real-time filters to complete processing under one second n&tptidhe next message.

168

According to our timing measurements all of the four real-tiftters finish message
processing under 100ms. We have tested RDAHMM using two differetitoats. First
we used a sliding window method and run RDAHMM for every 1000, 3000, 5000 etc
lines of data. Next we applied an increasing window method hgfeaing every 1000
new measurements to the RDAHMM server and appending this tcopsedata file.

Thus RDAHMM was run on increasing data sizes.

6.4.2RDAHMM Integration as a Filter

The second method we used to couple RDAHMM with real-time daigt issing
RDAHMM as another filter. This method requires the RDAHMM é¥ilto be deployed
on the same server as the actual RDAHMM application. Thefiltéeis expected to
listen to the ASCII position topic and accumulate certain number of messagesoias
the limit number is reached the RDAHMM Filter invokes the alctRDAHMM
application for the accumulated data. Figure 6-12 depicts the NBadaing topic

hierarchy for this particular application integration case.

Figure 6-12 - NaradaBrokering topics can be arranggin a hierarchical order.

169

6.5 Real-Time display of the GPS station positions on

Google Maps using AJAX methods

To demonstrate the technologies discussed earlier we have deveéyezdl JSP
based client interfaces leveraging AJAX [162] techniques. Theintsefaces we discuss
here demonstrate use of topic based publish-subscribe messagingarfiaging and
serving real-time data coupled with several real-time data filters.

AJAX or Asynchronous JavaScript and XML is a relatively new debelopment
technique for creating highly interactive web interfaces. Adé&Xot a technology by
itself rather a name for using a collection of several well-kntaehnologies together. It
employs XHTML or HTML, JavaScript, DOM and XMLHttpRequest. XMitpRequest
is originally developed by Microsoft and available since Intefeplorer 5.0. This
object is used to exchange data with the server asynchronously.

Traditionally user’'s every action generates an HTTP regureghe case of AJAX
these requests are JavaScript calls to the server side allowsis only the related portion
of the web pages to refresh instead of whole page to be subnoittbe server and
refreshed. This technique allows creation of powerful user inesfand uninterrupted
browsing experience for the users.

Creating AJAX compatible pages is relatively simple. Hereswamarize common
JavaScript techniques:

» Creating an XMLHttpRequest Object
For any browser, except Mar requester = new XMLHttpRequest();

For |IE var requester = new ActiveXObject("Microsoft XMLHTT P");

170

» Transporting Data using an XMLHttpRequest Object
To retrieve data from the server we use two methods:
open() to initialize the connection,

send() to activate the connection and make the request. i.e.

requester.open("GET", "getFaultNames.jsp?State=CA")

requester.send(null);

* To find out if the data retrieval is done we check the status ok#ldgState

variable. Object’s status may be any of the following:

0 — Uninitialised
1 - Loading

2 — Loaded

3 — Interactive
4 — Completed

requester.onreadystatechange can be used to monitor theadyState

variables status.

if (requester.readyState == 4){
if (requester.status == 200){
success();

}

else{
fail ();
}
}

» After a successful requestLHttpRequest 0bject may hold data in one of the
two propertiestesponseXML Of responseText

responseXML stores a DOM-structured XML data, such as:

<Fault >
< Name>San Andreas </ Name>

</ Fault >

171

« We use JavaScript XML parsing methods suctieg&ementsByTagName(),

childNodes[], parentNode...
var faultNameNode = requester.responseXML.
getElementsByTagName(“Name")[0];

var faultName = faultNameNode.childNodes[0].nodeVal ue;

* We can then use Google Map JavaScript functions to create the browser display.
* responseText stores the data as one complete string intltasm®ntent type of
the data supplied by the server was text/plain or text/html.

Most of the AJAX compatible interfaces that invoke JAVA classeghe server
side use Java Servlets. However since our user interfaces sa@ @a JSP we have
developed a novel method for making AJAX calls from Java Server Pages.

In the 1st JSP page we have a JavaScript method that creates an X MRetLIESt

and sends it to a second JSP page:

function checkForMessage() {
var url = "relay.jsp";
initRequest(url);
reg.onreadystatechange = processReqChange;
reqg.open("GET", url, true);
reqg.send(null);
}
The initRequest method creates the actual reqigstto

function initRequest(url) {
if (window.XMLHttpRequest) {
req = new XMLHttpRequest();
} else if (window.ActiveXObiject) {
iSIE = true;
req = new ActiveXObject("Microsoft. XMLHTTP");
}
}

172

In the 2nd JSP page (relay.jsp) we only invoke the server side ldagansth the

JSP response parameter.

<% Bean.getNames(response); %>

On the server side when the request arrives, the Java class fdretds messages

from the NaradaBrokering server and saves these position megsa{ds format in

the response object as follows:

<message >
<pos >

</ pos >
<pOS >

</ pos >
<pos >

</ pos >
<pOS >

</ pos >
<pos >

</ pos >
<pos >

</ pos >
</ message >

<name>DSME/ name>
<lat >33.03647257927002 </lat >
<lon >-117.24952051832685 </ lon >

<name>OGHS/ name>
<lat >33.13060260841207 </lat >
<lon >-117.04175378543312 </ lon >

<name>PMOB/ name>
<lat >33.357234902933584 </lat >
<lon >-116.85953161093065 </ lon >

<name>MVFB/ name>
<lat >33.21086802863064 </lat >
<lon >-116.52529897245469 </ lon >

<name>P486</ name>
<lat >33.260186243838994 </lat >
<lon >-116.3222711652632 </ lon >

<name>P482</ name>
<lat >33.24017400862219 </lat >
<lon >-116.67139746579954 </ lon >

Once the response object is returr@dcessReqChange

response and extracts the elements from the XML document.

method parses the

Figure 6-13 depicts the integration of Real-Time GPS messhigeadaBrokering

and AJAX based user interfaces.

173

Figure 6-13 - Architectural diagram for Real-Time GPS messages and AJAX integration

For this demo architecture we use an online XML document (RS peevided
by SOPAC to retrieve up-to-date list of available GPSastat This document contains
several properties of each station such as the station name, wWwknigtbelongs to,
latitude and longitude values, and the RTD server IP addresshamubtt number for

receiving the binary positions. Following is a segment from this file:

174

<station >
<network >
<name>LACRTN/ name>
<ip >132.239.154.69 </ip >
<port >5014</ port >
</ network >
<id >vtis </id >
<longitude >-118.294 </ longitude >
<latitude >33.713 </ latitude >
<status >up</ status >

</ station >

Figure 6-14 shows all of the GPS stations managed by SOPAR GRS network

has a distinct color.

Figure 6-14 — Real-Time GPS networks in Southern Qi#ornia displayed on Google Maps. A

list of the Real-Time networks and corresponding aybols are given at the right side of the figure.

175

Our user interfaces first retrieves the XML document fronP&0O and creates a

HTML form for user to select a network as displayed in Figure 6-15.

Figure 6-15 - Network selection page for AJAX and Gogle Maps Demo

176

Once the user selects a network and clicks the Submit butterver side Java
Bean subscribes to the appropriate NaradaBrokering topic andrstaetging position
messages at the same time user is forwarded to the ségBngade which contains a

Google Map.

Figure 6-16 — Real-Time Data Display on Google Map#&his figure shows the real-time GPS
stations belonging to SDCRTN network on the map anthe actual latitude and longitude position at

the bottom.

Figure 6-16 shows real-time GPS stations from San Diego Cdreg)-time
Network (SDCRTN) on the Google maps. The values shown here arettlaéraal-time

latitude-longitude values of the stations obtained from the RTD seBR§E stations

177

which did not publish a position message in the previous epoch are repdeséhtred

markers while online stations are shown with green markers.

6.5.1Near Real-Time Data Analysis Display on Google Maps

One of the most significant implications of real-time or neai-time data analysis
is the potential capability this gives us to evaluate the resdtthe event being
investigated is actually happening right now. This is perhaps ds¢ important feature
the sensors can offer us. Whatever the entity the sensorseainng the ability to
evaluate the data on the fly gives authorities to take actiomn €risis Management
systems may greatly benefit from this capability.

As we have discussed above in RDAHMM integration scenario SendorGr
architecture enables seamless integration of the sensamstwith the data analysis
applications. Scientific visualization tools are important groupaftfware for scientists
to see and demonstrate the result of data analysis. In this section we a¥sceisamples
which demonstrate the successful coupling of simple visualizatiorcagphs with real-

time data streams.

6.5.1.1 GPS Station Position Changes on Google Maps

One of the cases we can use the GPS station messages suabizeithe
movements of the stations. This can be especially helpful to uadertte long-term
tectonic movements. At the same time observing the status chahgeroup of stations
in pre-seismic periods may help us correlate small activities withceakes.

For these reasons we have developed a simple visualization applicatmplay
the position changes of the stations. We have integrated this applicgith the

178

SensorGrid as in RDAHMM scenario. A data accumulation filtas deployed to listen
to the ASCII position topic of each network and pick up the individigios positions.
This filter was set to collect as many as 600 data porotglily equal to 10 minutes

worth of data) and trigger the visualization software to visualize the accuthdktie

Figure 6-17 — GPS Station Position Changes are diaged on Google Maps. The pop-up window
displays the relative position change of the DVLW sition for the last 600 measurements or

approximately 10 minutes.
We have used Google maps to display the visualization resultowas $n Figure
6-17. The data visualization was performed for X, Y and Z positioeadi station. The
picture shows the result for X axis position change for thellashinutes. User can see

the Y and Z axis position changes by clicking to the corresponding tab.

179

6.5.1.2 RDAHMM Analysis Results on Google Maps

The second visualization example is display of RDAHMM datayaiglesults on
Google Maps. As discussed in the second RDAHMM integration sceaharapplication
runs on certain number of data points and creates several outpuMddsve developed
a visualization filter to display the RDAHMM results. For avegi time series data
RDAHMM detects unique states, and marks them in the output fikes.viBualization

filter is triggered after the RDAHMM analysis was complete aftery600 data points.

Figure 6-18 — RDAHMM Analysis Results Displayed o1iGoogle Maps

A sample result of RDAHMM output visualization is shown in Figur&86-As it

can be seen from the figure unique states are represented nerdif®lors to help

180

understand when exactly a state change has occurred. Similapteviwis example the

visualization filter is run for X, Y and Z coordinates separately.

6.6 Summary

In this chapter we have discussed a Grid Architecture for cmupal-time data sources
with Web Services using a publish-subscribe messaging systemrchitecure is based
on sequentially deployed filters around a publish-subscribe messagitegn to receive
and process real-time data streams. This architecture hastigbtuses for crisis
management and rapid response systems. We have also demonstraessfiduc
implementation of our approach for GPS data streams. The syststnbeéd in this
chapter is currently actively being used in several projegtSdripps Institution of

Oceanography and NASA scientists.

181

Chapter 7
Performance and Scalability of the Real-Time

Data Grid

7.1 Introduction

In Chapter 6 we have discussed Web Service based filteiteantaire to couple
real-time data sources with applications and presented arenmaptation of this
architecture for permanent Global Positioning System networks. SéwsorGrid
implementation has so far been used in several projects for arenigdaleal-time data
access. In this chapter we discuss Real-Time Data Gridrpemce and scalability tests.
The main goal of these tests is to find out if our filter dedhiire is scalable for use with
large numbers of real time data providers and clients.

Real-time data sources such as sensors are generally ysadab number of
experts and specific applications. However because the pervasive md internet

helped diverse user groups to have access to various types cedatas can be thought

182

of the next generation data sources which could supply Web vedhtime
measurements. The SensorGrid architecture may help makendwess®#veb accessible,
however this requires the system to support many number of data producers andclients t
be served simultaneously. Continuous operation is crucial for the satagprocessing
applications which might be used in decision making such as istelisaanagement, or
rapid response cases. Therefore the SensorGrid system shoulduageehvearefully both

from performance and scalability aspects. The system shouldliie shough to work
indefinitely and should not be affected by addition or removal of nesntslior data
sources.

As discussed in the previous chapter our real-time data Grid iraptation is
based on three types of major components; filter Web Servicesmiaion Services and
publish/subscribe messaging system. Both the filters and theagmggssystem are
required components for real-time, continuous and streaming operation. @théne
hand the Information Service is usually only used at the beginniray s#ssion for
gathering information about the location of the filter Web Sesribus is not part of the
continuous operation. Therefore the performance of the systematydatfected by the
deployed filters and the messaging system. For these reasofogwg the performance
tests on the integration of the filters and the messaging substrate.

Perhaps the most obvious unique characteristic of a real-timsersgata Grid from
more traditional Grid frameworks is the need for providing supportctortinuous
operation. There should be no interruptions on the data flow, and the mdstage/

system should be able to handle this type of operation. The filters should be teated for

183

type of memory leaks, which could result in interruption of the semsessage

processing.

7.2 Testing the Real-Time GPS Data Grid

Implementation

In Chapter 6 we have described the implementation of the RealDatee Grid
architecture for managing GPS data streams. The implatientis built using topic
based publish-subscribe messaging system and filter Web Senvidéss application
domain the GPS streams are made available to the users thragyes of filters
connected by the NaradaBrokering messaging substrate. &tiéicsppplication area for
the Grid consists of 8 GPS networks each of which contains ag asahO individual
permanent stations. The GPS stations publish their positions regutexyper second.
Currently the system supports real-time access to 85 statamingamed by SOPAC. The
total number of real-time stations deployed by Southern Califdmtegrated GPS
Network (SCIGN) is 250. The trend in this specific field shows thate real-time
stations will be deployed around the globe in the near future. attissfin line with the
trends in sensors related developments which shows that ingreasitbers of sensors
are being used globally. Therefore in the near-future we shoyleceto have large
numbers of sensors producing data and clients plugging into themeastieams. To
support large numbers of GPS networks and customers for prolongegdmods it is
important to identify the limits of the system components.

In the simplest setup the system will comprise of a broker arstadilters. So the

system performance will be mainly affected by the perfooeasf the broker since the

184

filters will mostly be deployed on different servers. Howevesome cases where large
numbers of filters are run on the same server performance degradationecpedted.

Our tests so far show that we can use a broker for several kefwath running at
least 3 filters for each network. We run this setup for over 3 monitiout any
problems. However since the system is supposed to be expandable to Isupgatls of
clients and tens of GPS networks, we should find the thresholds wheergystem
performance starts to degrade.

The messaging broker in the system is responsible for routimgdhtime streams
from sources to the subscribers. Since the data is continuousindlawilHz frequency
we want the messages to be delivered in less than 1lsec beforeext message is
received, and we do not want any kind of queuing to delay the medshgery. Any
gueuing lasting more than one second or temporary storage of tsagesswill be
extremely risky since new messages will arrive continlyoarsd the queue will continue
to grow, causing delivery failures.

Therefore the performance tests should focus on finding out thenuaxnumber
of real-time providers and clients a single broker can support witimdducing
additional overhead or become unresponsive. There exist limits fordker in terms of

the supportable numbers of publishers or subscribers as well as a maximunedata rat

7.3 Test Methodology

To test the performance of the system we have createdcaseasp which consists
of several filters and a single broker. In this setup we have fhres: A message

forwarding filter to route GPS messages from the RTD s¢ovitre NB server, a RYO to

185

ASCII converter and a simple client filter. In the normal openatve plug into the
SOPAC RTD server to receive the GPS messages howevéefpetformance tests we
record the raw GPS messages for 24 hours and replay them using another filter.

We wrote two filters for recording and replaying the binary Ri¥i@ssages: RYO
Recorder filter and RYO Publisher filter. The first filubscribes to a RYO topic and
creates daily GPS records by saving incoming messages &go lfilcreates a new file
after midnight, and names it to reflect of which GPS netwanblds the records and for
which date. For instance a file nam@BaTN_01-09 11 2006-12_00 00 _AM.ryo has
RYO records of the CRTN_01 network for the date 09/11/2006 and theaiingtles was
collected at 12:00:00 AM.

In our performance tests we use RYO Publisher filter to pubhgh kdinary
messages in these files to a broker topic. This way we aracmeplthe actual RTD
server with a filter, which allows us to create as many @Ge&®ork as we want. The
RYO Publisher filter also provides capability to change thesaggs frequency. Currently
the actual RTD server publishes network messages at 1Hz ri3gues. one message
per second is published for each network. By changing a filtanmgter we can change
this frequency and hence the data flow rate. Considering theh&ddintthe near future
the GPS stations are expected to work on 2Hz frequency, i.e. sangloigons twice in
a second, this capability of the RYO Publisher filter allowgausimulate future GPS
networks.

Overall performance of the system can be estimated by nragasseveral
characteristics:

1- The stability of the system for continuous operation

186

N
1

Ability to support multiple data sources

w
1

Ability to support multiple clients

»

End-to-end message delivery times

5- Ability to preserve the order of the incoming messages

Figure 7-1 depicts the basic system configuration for the peafcentests. The test
system consists of three filters and a NaradaBrokering sérkey is the simplest filter
configuration that allows clients to access the GPS messages in hunsiegdarmat.

The first filter is the RYO Publisher which replaces the R3ddver used in real-
world operation. The RYO Publisher filter reads a daily RYiaecfile and publishes
the GPS position messages to a broker topic in 1Hz frequencyRYReto ASCII
Converter filter converts the binary messages into ASCII foemdtpublishes to a new

topic; finally the Simple Filter subscribes to this topic and receives them.

Figure 7-1 — SensorGrid Performance Test Setup inatles three real-time filters and a broker

187

To measure the mean end-to-end delivery time for messagtkes measurements
at 4 points:

1

Before the message is published by the RYO Publisher,

2- As soon as it is received by the RYO to ASCII converter filter

w
1

After the format conversion and right before publishing to another topic

»

When it is received by the Simple Filter

The configuration in Figure 7-1 has a complete network path frond 1ot it also
includes RYO to ASCII conversion between 3 and 4. So in ordendotlie actual wire
transfer times we subtract the format conversion cost from the total time:

Tiranster= (T2 — T1) + (T4— Ta)

Other than the network delay, we also test if the messagedekvered in the
correct order. To do this the RYO Publisher marks the outgoing gess#aincreasing
order. It also records the message size, which may affect the tramsfer ti

We use NaradaBrokering event properties to pass the timestantpsother
information from one filter to another. To do this the RYO Publishesites a string with
three values and inserts it as MSGSTAMP property into the M&htEit is about to
publish; The first value is the message number, the second numiver s&zé¢ of the
message in bytes and the last value is the time stamp liseoonds. When the
subsequent filters receive the NB Event they first exttaetMSGSTAMP property and
append the current time stamp. This way all publish and subscriteiopsrin the filter

chain will be marked in the MSGSTAMP property. When the finkérfireceives a

188

message it just extracts the string then appends its timgestachsaves it in a file for

further analysis. Two message stamp samples are given here:

Message Meésizsgge Time Stamp Time Stamp Time Stamp Time Stamp
Number 1 2 3 4
(Bytes)
1 175 1159247077749 1159247078314 1159247078349 1159247078472
2 1561 1159247079030 1159247079034 1159247079058 1159247079063

Table 7-1 — Time Stamps Created for Performance Tes

To measure the five characteristics of the system asilbed@bove we identified
following test cases:

1- Stability of the system for continuous operation

2- Number of GPS networks that can be supported by a single broker

3- Number of clients that can be supported by a single broker

4- Number of topics that can be supported by a single broker

To eliminate the outliers in the final measurements we reelysapply a Z-filter.
Given a number of measurements the Z-filter finds if anyqadati value is an outlier by
using its standard deviation value and the average value of alertiees. For a
measurement (x) the formula for the z-filter can be expressed as:

Z value = abs]t - average] /'t standard_deviation
Then the calculated value is compared to a cutoff value, whitsumlly set to 2.5.

If the z-value is greater than the cutoff value then it isidensd an outlier and removed

from the measurements.

7.4 Test Results

In this section we discuss the test results.

189

7.4.1System Stability Test

The first test is to run the system shown in Figure 7-1, for 24 feoutsecord the
timings. At the end of the test we first measure the geenaessage delivery times, and
then by dividing the timings into segments, figure out if continuousatiperdegrades
the system performance. We also want to see if the nesssali be delivered in the

incoming order.

Real-Time Message Transfer Time

W‘“‘"’WMM\

Transfer Time
w

B i T o T o L e

8888
S ~ ™ A

6:0p |

888888888588
NS 9T EeY AN

~ ~
Time of the Day

‘ —e— Transfer Time —s— Standard Deviation ‘

Figure 7-2 — System Stability Test Results for 24eur operation of the sample test setup.

Figure 7-2 illustrates the results of the first test. Tlséweas run for 24 hours. The
last filter in the test setup described in Figure 1 recordmdis from all steps for each
message published every second. We apply a Z-filter to clean ther aatlues, and
calculate averages for each half hour. Each point in the grapbsponds to 1800

measurements or roughly equal to 30 minutes worth of data. Thesrebalv that the

190

transfer time is stable for average around 5.6ms. Overall #testows that the

continuous operation does not degrade the system performance.

7.4.2Maximum number of GPS networks a single broker can
support

Another important feature the system should provide is to be abéevi® multiple
publishers simultaneously. This is important for managing GP&stréecause there are
multiple GPS networks we need to support simultaneously.

For this test we keep the original configuration described in Figidrentact, and
increase the number of the sensor data sources by adding new RY&hétablThus we
simulate publishing messages from multiple GPS networks. The oéghls test allows
us to specify the number of networks one single broker should be usetlreal world

applications.

Figure 7-3 — Multi Publisher Test Architecture

191

Figure 7-3 shows the test architecture described in Figurevithladditional RYO
Publishers. Note the NaradaBrokering topics are used to connexs Vilith each other.
The RYO Publisher 1 publishes the raw data to the Topic 1; the BAWSCII converter
subscribes to this topic and receives the binary messages, whiai ipublishes the
converted messages to Topic 2. Subsequently the Simple Filtevesdbie ASCII
messages from the Topic 2. For this particular test, we tleehrsw RYO Publisher
filters as shown in Figure 7-3. Each of the new publisher filteraghds binary data to a
new topic.

We have run this test for two consecutive days. Initially theesysionsisted of the
components shown in Figure 7-1, but after every 30 minutes we startatevis0
publishers. The maximum number of the publishers we were able db ves 1000
which is due to the fact that the maximum number of open-file g¢sigithe operating
system allowed is 1024. At the end of the test, we removed the sditben the results
and divided the results into 1800-entry segments which is roughly egd@inbinutes of
GPS data stream.

As Figure 7-4 and Figure 7-5 show the message delivery timleaysastable at
around 5ms. We don’t observe any unexpected increase or decifBaiseshows that
even with maximum number of publishers allowed by the broker, thensysupports
GPS message delivery without any problems.

We also confirmed that the message order is preserved during the test run.

192

Real-Time Message Transfer Time
6
W e N UDUUUOON WO PO N WO NS
MM AR Stk 2 M ad
4
Q
£
'_
% 3
g
'_
2
lfwwﬂm‘ﬂmw
o+———T"T""""—"T""TTT T T T T
LS A L A P AL PP LD PP
ST T T v e AT o7 97 gt 07 o 9T T 9T T
Time of the Day
‘ —e— Transfer Time —s— Standard Deviation ‘
Figure 7-4 — Multiple publisher test results for the first 24 hour
Real-Time Message Transfer Time
6
5 MWW
4 4
g
5 3
g
F o2
R Rl T T L e T g
o+ """""""""T""""T"""""T"""T""" T

Time of the Day

‘ —e— Transfer Time —a— Standard Deviation ‘

Figure 7-5 — Multiple publisher test for the secon®4 hour with 1000 active publishers

193

7.4.3Maximum number of clients a single broker can suppud

In the second test we explored the limits of the system fhentdata provider side.
In the third type of the tests we look at the system frontlieat’s side and try to find
the number of clients the basic system described in Figure 7-dupgort. Determining
this limit is important for providing uninterrupted real-time datzess to large number
of clients.

In these tests we will have only one GPS Network publishing tlzeaat increase
the number of Simple Filters to simulate the real-time dggats. The result of these
tests will allow us to decide when to deploy a new broker gelarumber of customers
plug into the real-time streams. For this test the numbedliefts can be increased

exponentially.

Figure 7-6 — Multi Client Test Architecture

194

Figure 7-6 shows the system architecture for test 3. Note the RYO Pubhshtea
RYO to ASCII Converter filters are connected the same agaip test 2, however in this
particular test we run multiple Simple Filters which arecalinected to the Topic 2. This
allows us to see if the system can support distribution of maal-thessages to large
number of clients without introducing additional overhead. For our GP&afpmhs the
message frequency is 1Hz, therefore we expect messagesetklivahe clients under

1000ms.

Real-Time Message Transfer Time
Multiple Subscribers

40
35 | W
30

25

20 /

15 ‘//

10 v—v/

Transfer Time (ms

O O
SO N I I N N O N N O SR - I .
SR e S R Rl
Time Of the Day

‘ —e— Transfer Time(ms) —=— Standard Deviation ‘

Figure 7-7 — Multiple Subscribers Test Results

Figure 7-7 shows the results of the test 3. The test ®rastly as depicted in
Figure 1, but after every 30 minutes we add 100 Simple Fiientslto the system. As a
result at the end of thé"shour there are 1000 subscribers. As explained in test 2 the
broker allows only 1024 socket connections to be open simultaneously. Teexé#ar

the 8" hour the system works with 1000 clients for another 19 hours. We rueshistt

195

two consecutive days. The results shown in Figure 7-7 are the awdrdigese two
successive tests conducted for two consecutive days.

The test results tell us that the behavior of the broker fotipteutlients is different
than with multi publishers. In the multi publishers case the avéragsfer time for GPS
messages is almost always around 5ms which is same as tleepsiblisher and single
subscriber case described in test 1. Thus we can say that tbermointhe publishers in
the system does not affect the overall performance, as loting amumber of the clients
do not exceed a certain threshold. On the other hand increasing the wficlEnts has
an obvious effect on the average message distribution time. Thists theefact that the
broker needs to forward messages to many receivers, which takes more time.

Figure 7-7 shows that for every 100 clients subscribing to the sa@pein 30
minutes period, the average message delivery time increagenailfsseconds. The total
number of clients reaches to 1000 after 5 hours and the average deferfyom the
publisher to the final client filter increases to 35ms. Althoug ithseveral times higher
than the average time measured in tests 1 and 2 it is gtéptable, since the delay
between successive GPS messages is 1 second.

To sum up, this test shows that the system with a single brokbrssgp to a

thousand clients with an acceptable transfer delay.

7.4.4Multiple Broker Test

The test system described in Figure 7-1 is the most basic gatfan to provide
human readable GPS messages for our application use casersthierée test cases
explained in this chapter show that this system is stable farotfitnuous operation and

scales up to the maximum number of file descriptors allowedhdysérver's operating

196

system. Both in multiple-publisher and multiple-client tests watified the limits of the
system as 1024 concurrent clients or publishers. Although this is the luppeof the
broker without changing the operating system variables for isigaopen file
descriptors, the system might need to support many more adeptsducers. Therefore
we have investigated an alternate approach for increasing thieenwhthe clients to
support. This approach is based on creating distributed NaradaBrokeskey network.

NaradaBrokering allows creating broker clusters for extending igeskivery

Figure 7-8 — Multiple Broker Test

Figure 7-8 displays the setup for multiple-broker test. For tistswe first linked
two NaradaBrokering servers with each other utilizing brokertsvoriing capability.

This allows brokers to exchange messages and provide accessatossbn the same

197

topics. For instance any message published to Topic-A on thebfioker can be
retrieved from both Broker-1 and Broker-2 from Topic-A.

This configuration potentially can solve the limits we faced inghevious tests
because now we can have as many as 1024 connections on each broker. Taproze
can actually overcome the limits set by the operating systenexecuted this test by
connecting 750 clients to each broker. Thus in total the systermuwasgith 1500 clients

for 24-hour period.

Multiple Broker Test
Broker 1
35.00
30001 f":'WW:'°
25.001
’g 20.00
-E 15.00 |
10.00 -
S.W—W
0.00
8 8 888 88 88 88 8 88 8 8
SH e8NSy 6~6 gy 88888 4dy
Time Of The Day
‘ —e— Transit Time —s— Standard Deviation ‘

Figure 7-9 — Total transit times for the first broker; Note that in the first 30 minutes we increasehe

number of the clients to 750 and the average trangtrtime reaches to 30ms.

To show that multiple-broker configuration is feasible and does not ingoduc
unacceptable overheads we took timing measurements for each brgkee. 9 shows
the timings from the Broker-1 which demonstrates similar behavtbrthe previous test
shown in Figure 7-7. Here we see that continuous operation does not ddgrade

performance.

198

Multiple Broker Test
Broker 2

40.00

2 [T Reeed” e A“Wv‘“°‘

30.001

—~ 25.00
3
o 20.00 -
E
F 15.00 -

10.00 &

L S
88 338838888888 3 3
SH® S e~ g8 g8 gEg gy

Time Of The Day
‘ —— Transfer Time —8— Standard Deviation ‘

Figure 7-10 — Total transfer times for the secondroker; We start 750 clients in the first 30 minutes
and the average transfer times reach to 35ms.

Figure 7-10 shows the test results for the second broker. Overallidrebf the
Broker-2 is very similar to the Broker-1 except there is a &ddhtion in this case. This
5ms overhead is due to the fact that the messages published to Brel@odessed in
this broker and sent to Broker-2. Even with this extra overhead thensgstéormance is
acceptable and the 35ms transfer time is acceptable sincentireutng GPS messages
arrive in 1sec or 1000ms intervals.

This test shows that the system can be scaled up by grdddradaBrokering
networks. This potentially means that there is no hard limit on th@uof sensors or
clients to support.

It should also be noted that for all tests described above we fsavehacked and

confirmed that the message ordering was preserved.

199

7.5 Summary

In this chapter we have discussed the performance and thetytasglects of our
real-time data Grid architecture. We have designed a hiésicsystem which represents
the conventional use of our system to support real-time GPS stiéd&nisave executed
several tests to find the limits of the system in term&i@umber of sensors and clients
that can be supported. The test results have shown that the sgstdr® used up to 1024
clients or sensor streams due to the operating system resfgicto overcome this limit
we designed a multiple-broker test and shown that this setup can sifpportlients for
continuous operation. The last test also shows that the systdme eapanded to support

as many clients or sensors as required by creating broker networks.

200

Chapter 8

Conclusion and Future Research Directions

8.1 Thesis Summary

In this thesis we presented a Service Oriented Archite¢tungrovide seamless
access to both archival and real-time geographic data. It providedied framework
with common interfaces for accessing and manipulating distribuéegpgtial data
sources. The architecture is based on Web Services and Grid Mgssagqdigms and
provides high rate, high performance data transfer options for scientificajpls.

The SensorGrid architecture is an example of the Grids of Geid$] paradigm
[29]. Grids of Grids are built around Service Oriented Architectori@ciples by
employing family of services and integrating them with omm messaging substrates
and information services. Our implementation includes Data Griktssrfor supporting

distributed access to stored geospatial data and filter serfoceaccessing real-time

201

sensor measurements. We used NaradaBrokering publish-subscrém &ystinplement
streaming services for both archival and real-time data a@sssdemonstrated the

performance of these services.

We have developed Streaming Web Feature Service for the GéS@at which
provides high performance and high rate data transfer options. Tkisesetilizes
NaradaBrokering to deliver geographic features to the cliemtsch provides
performance improvement over traditional Web Services. Further penioe
improvements gained by incorporating Binary XML frameworkshwihis service.
Integration of the Binary XML frameworks proved to have improved thi®peance for
greater network distances by a significant margin. We condl@tiensive performance
tests to analyze the performance of the streaming WFS #ewhnaeed that it can be used

in scenarios where high rate data access is required.

To support Real-Time Data Grids we developed the notion of Sensar Grids.
Sensor data sources have unique characteristics which distinguisifrohenme offline,
archival data access. Sensors can be used to understand a geopmytjcah great
detail. The measurements obtained from sensors can be evalumediately after
receiving in real-time, or they can be stored for delayedsace®wever the trend in GIS
world today is moving towards on-the-fly data evaluation which reqstedde, flexible
and scalable frameworks to support real-time coupling of senstiiscaimputational
services. We developed real-time filters for this purpose.ugéel NaradaBrokering to

provide inter-filter communication and hierarchical arrangement of thesfilia topics.

202

We conducted extensive performance and scalability tests tondetethe limits of
the Real-Time Data Grid. Since one of the most important regeiresnior a real-time
system is stability, we tested the system for this req@inénThe tests revealed that the
architecture works reliably and addition of new data sourceglients does not
significantly affect the performance. The scalability te&sonstrated that the maximum
number of data publishers and clients is determined by the systefigucation and
without any modifications to the operating system parameteenisupport as many as
1000 sensor sources or clients simultaneously. We demonstrated ythatediing
NaradaBrokering networks the system can scale to even langdver of data providers

or clients.

8.2 Answers to Research Questions

In this section we give brief answers to the research questions outlined in Chapter 1.
1. Can we implement unified data-centric Grid architecture to provide common

interfaces for accessing real-time and archival geospatial data sources?

The major contribution SensorGrid architecture makes to the GIS goityms
creating a scalable, stable and flexible framework for suppoaticigival and real-time
data in data-centric Grids. SensorGrid architecture is developft dn important gap
existing in GIS community: Lack of a software framework thatdes offline and online
data sources. Traditionally Geographic Information Systems haveuseel to analyze
data obtained from spatial databases; however with the sensors girgpagenany GIS
related fields the need for a real-time data support system is being felt

In chapter 3 we described the overall architecture of a Gridraythat can provide

unified access to both types of geospatial data. The viabilithisfsystem has been

203

discussed and proved in subsequent chapters with extensive testingl Sapkeation

use cases and real-world applications have shown that the dystebeen successfully

implemented.

2. How can we incorporate widely accepted geospatial industry standards with
Web Services?

One of the major problems that have been acknowledged by almogstial pathe
GIS world is interoperability. Hence any work in this area thwosisider the work that
has been done previously and build upon. We have conducted extensive field work and
background research to understand the open standards developed recesty Wat
the OGC based data and service standards are widely being ussdbatetl. Therefore
we adopted the OGC standards for defining our GIS data products, aednempéd our
GIS Web Services to conform to these standards.

We demonstrated that the common industry standards can be incorpeitited
WSDL-SOAP based Web Services. We used these services in |sseamatific
workflows which also proved the usability of these services ins@ahtific world. This
is described in detail in Chapter 4.

3. Are the performance of the Web Services acceptable for Geographic
Information Systems and how can we make performance improvements? Can
we build services for supporting scientific GIS applications that dmand high-
performance and high-rate data transfers?

The initial Web Services we created for serving geograph&cptavved to be useful
in use cases where the amount of the requested data is noangeryahd in such cases

where transfer rate is not an issue. However with largeqiegaes the response time of

204

the Web Services are not satisfactory. Also the limitation@mmount of data that can
be served by the Web Service implementations are another issue we have faced.

To create high performance Web Services we have createohistgegersion of the
Web Feature Service. We used the traditional SOAP messagingitfal geospatial
query and utilized NaradaBrokering to stream query results. nieikod improved the
performance of the system significantly, also removed anydiions on the size of the
data that can be requested. Further improvements made by incogp@aiular Binary
XML notion. We tested the system with two major Binary XMlanfreworks and
demonstrated that the XML transport performance can be improved significantly.

4. How can we build a Grid architecture to couple real-time sources witlscientific
applications that also provides high interactivity and performance?

Serving real-time sensor measurements using traditional Véelc&s is not
possible since the overhead associated with creating and trengsfe©OAP messages is
larger than the time interval between continuous messages. Téspasially true for
large network distances. For these reasons we have createuneséilters and Web
Service interfaces to control them. The filters we have edeate deployed around
NaradaBrokering messaging system. We have created XMlensxh to provide
metadata descriptions for filters and filter chains. The $lae also controlled via Web
Service interfaces, which make it possible to create workfloMes.also incorporated
information system for users to search and access filters and thdiilitepa
5. What is the way for managing real-time data filters using Web Services?

Web Services provide standard interfaces for exposing computatesairces.

We utilized Web Services to provide control interfaces for ouktmae filters. The

205

filters can be remotely deployed, started, stopped or orgatiiredgh these interfaces.

The filter Web Services can also be used by the clients tostetipgefilter metadata files

which describe the information such as capabilities of particular filters.

6. Can we organize and manage real-time sensor data products using publish-
subscribe systems? Are the mechanisms of topic based publisiyscribe systems
appropriate?

Considering the sheer number of sensors and sensor networks it is wise to look for a
way to organize real-time measurements. We suggested usiadaBaokering topics to
logically organize sensor data which also helps their discoveeyilMglemented this in
GPS data streams and it has been used by field scientistarious applications and
demonstrations. We have shown that the topic based publish/subscribm syste
appropriate for real-time, continuous data exchange.

7. Is the performance of the Real-Time Data Grid acceptable for unintemupted,
continuous operation?

Chapter 7 explains the extensive scalability and performancenestsnducted for
understanding the limits of the Real-Time Data Grid implentemtaThe tests show that
the system is stable for continuous operation. Apart from thewesk&ve been running
real-time filters for over 4 months for all of the 8 GPS neks@upported by SOPAC.
Our experience shows that the SensorGrid implementation can workinitedgf
provided no network or hardware related problems occur. The SensorGrizksdrave
also been deployed and run by GPS scientist in SOPAC for the past several months.
8. Will the Real-Time Data Grid implementation scale for large number of @ta

providers such as sensors and clients?

206

Scalability is another issue with the real-time sensor ssvimecause of two
reasons: First, the number of sensors and sensor networks acy aleegp large and
growing rapidly. Hence the system should be able to support additi@argefnumbers of
sensors. Second, the system should be able to serve the measuremealtsime to
many clients.

For these reasons we have conducted scalability tests foeahenme filters and
explained these tests in Chapter 7. The tests show that tamsyah scale to as many as
1000 clients or publishers with a single broker. For supporting more numberseate

NaradaBrokering networks, which allow the system to be enlarged infinitely.

8.3 Directions for Future Research

In this thesis we have outlined our initial research and imgheations to build a
geophysical Grid architecture. We addressed several issla¢sdrto archival and real-
time data access and processing. At the end of this dissextatidiscuss possible future
directions for this research.

Although there are several related projects developed or still uedelopment,
we think that more research is needed in GIS Grids area. Ok & an example
especially aimed towards earthquake science, and it caddpeed for other domains.
However the effects of domain specific requirements are notumdirstood. We think
that it is important to explore how the common data standards suMa and service
standards such as WFS or WMS are being used in different subrdomaihe GIS
community, and if any improvements are needed in such standards.

Our research for improving the service performance is focusédmfronts: better

transport mechanisms, and decreasing the message payload sinesr&/able to gain

207

performance improvements in both cases, by integrating publish/faésnassaging,
and binary XML Frameworks. One interesting issue to discover isetb@end generation
Axis Web Service Container (Axis2) which can provide differepibdities to integrate
alternative transport protocols. Another issue that should be studieat ialthough the
Binary XML frameworks help in certain cases the currentesyds based on static, pre-
determined selections. Either the client or the server decideh Wwinary format the
output GML is to be encoded. A case based reasoning approach, which timakes
selection based on the previous events, may help the system choosepproiate
binary encodings and transport mechanisms.

We have also built filter based Grid architecture for remétdata access to be used
with sensor streams. The current system is being used in Isprggegts related to GPS
sensor streams. The developments in these projects will also stepggensorGrid
research directions. One interesting issue to study is to udevGirkflow tools such as
Taverna to create scientific workflows with real-time dstteams. Research in this area
may help us better understand real-time data analysis requirements.

The scalability tests for our real-time Grid system Haswvs that by creating
NaradaBrokering networks we can support as many sensors ants @is necessary.
Therefore it will be useful to have a way for the systemutoraatically create/deploy

required number of brokers and update the system registry on-the-fly.

208

Appendix A

Sample GML Schemas

A.1 Fault Schema

Following GML 2.1 conformant XML Schema is developed for describing
California Faults. The schema is based on the Quake Tables Databaseilasdiesc

[97]

209

Figure A-1 Fault Schema

210

Figure A-2 - Coordinates elements in the Fault Schmea is derived from the GML LineString
construct

<?xml version="1.0" encoding="UTF-8"?>
<l-- edited with XMLSPY v2006 (http://www.xmlIspy.com) by Galip Aydin ->
<xs:schema xmins:xs =" http://www.w3.0rg/2001/XMLSchema "
xmins:fault =" http://mastar.ucs.indiana.edu/fault "
xmlns:wfs =" http://complexity.ucs.indiana.edu/~gaydin/wfs
xmins:gml =" http://www.opengis.net/gml "
targetNamespace =" http://mastar.ucs.indiana.edu/fault
elementFormDefault =" qualified " version ="0.1">
<xs:import namespace =" http://www.opengis.net/gml
schemalocation =" http://complexity.ucs.indiana.edu/~gaydin/ogc/original/gml/2.1.
2/feature.xsd ">
<xs:element name="Fault ">
<xs:complexType >
<xs:sequence >
<xs:element ref ="fault:Faultld ">
<xs:element ref ="fault:FaultName ">
<xs:element name =" StrandName " type ="xs:string "/>
<xs:element name =" Segment" type ="fault:SegmentType
minOccurs ="0" maxOccurs ="unbounded "/>
</ xs:sequence >
</ xs:complexType >
</ xs:element >
<xs:complexType name =" FaultType ">
<xs:sequence >
<xs:element ref ="fault:Faultld ">
<xs:element ref ="fault:FaultName ">
<xs:element name =" StrandName " type ="xs:string "/>
<xs:element name =" Segment" type ="fault:SegmentType
minOccurs ="0" maxOccurs ="unbounded "/>
</ xs:sequence >
</ xs:complexType >
<xs:element name =" Segment" type ="fault:SegmentType ">
<xs:complexType name =" SegmentType ">
<xs:sequence >

<xs.element ref ="fault:Faultld ">
<xs:element ref ="fault:FaultName ">
<xs:element ref ="fault:Interpld ">

<xs:element name="Segmentld " type ="xs:int " minOccurs ="0"/>

211

<xs:element name =" SegmentName" type ="xs:string "
minOccurs =" 0"/>
<xs:element name="Strike " type ="xs:float " minOccurs ="0"/>
<xs:element name="Dip" type ="xs:float " minOccurs ="0"/>
<xs:element name="Depth" type ="xs:float " minOccurs ="0"/>
<xs:element name="Width " type ="xs:float " minOccurs ="0"/>
<xs:element name =" Coordinates "
type =" gml:LineStringPropertyType " minOccurs ="0">
<xs:annotation >
<xs:documentation >[LatStart, LonStart -
LatEnd, LonEnd] makes a line </ xs:documentation >
</ xs:annotation >
</ xs:element >
<xs:element name =" StartCoordinate "
type =" gml:PointPropertyType " minOccurs ="0">
<xs:annotation >
<xs:documentation >LatStart and LonStart
</ xs:documentation >
</ xs:annotation >
</ xs:element >
<xs:element name =" EndCoordinate "
type =" gml:PointPropertyType " minOccurs ="0">
<xs:annotation >
<xs:documentation = >LatEnd and
LonEnd </ xs:documentation >
</ xs:annotation >
</ xs:element >
<xs:element name="LastBreak " type ="xs:string " minOccurs ="0"
maxOccurs =" unbounded "/>
<xs:element name="Friction " type ="xs:float " minOccurs ="0"/>
<xs:element name="ObsType" type ="xs:int " minOccurs ="0"/>
<xs:element name =" Recurrence " type ="fault:RecurrenceType "
minOccurs ="0"/>
<xs:element name="Slip " type ="fault:SlipType "
minOccurs ="0"/>
<xs:element name =" DipRate " type ="fault:DipRateType "
minOccurs =" 0"/>
<xs:element name =" StrikeRate " type ="fault:StrikeRateType "
minOccurs =" 0"/>
</ xs:sequence >
</ xs:complexType >
<xs:element name =" Reference " type ="fault:RefType ">
<xs:element name =" LReference " type ="fault:RefType ">
<xs:complexType name =" RefType ">
<xs:sequence >
<xs:element ref ="fault:Interpld ">
<xs:element name =" Author " type ="xs:string " minOccurs ="0"
maxOccurs =" unbounded "/>
<xs:element name =" Publication " type ="xs:string "
minOccurs =" 0"/>
<xs:element name="Year" type ="xs:string " minOccurs ="0"/>
<xs:element name="Title " type ="xs:string " minOccurs ="0"/>
<xs:element name="Volume" type ="xs:string " minOccurs ="0"/>
<xs:element name =" Number" type ="xs:string " minOccurs ="0"/>
<xs:element name="Pages" type ="xs:string " minOccurs ="0"/>
<xs:element name =" Comment' type ="xs:string " minOccurs ="0"/>

</ xs:sequence >
</ xs:complexType >
<xs:.annotation >

<xs:documentation
</ xs:annotation >
<xs:element

<xs.element name =" Faultld

name =" FaultName

>global elements </ xs:documentation >

type ="xs:string />

" type ="xsint />

212

<xs:element name="Interpld " type ="xs:int "/>
<I-- = ->
<l-- ======= General Magnitude Types - Max Min and Average ============ -->
<xs:complexType name =" RateType ">
<xs:sequence minOccurs ="0">
<xs:element name ="Max"' type ="xs:string " minOccurs ="0"
maxOccurs =" unbounded "/>
<xs:element name="Min" type ="xs:string " minOccurs ="0"
maxOccurs =" unbounded "/>
<xs:element name =" Average " type ="xs:string " minOccurs ="0"
maxOccurs =" unbounded "/>
</ xs:sequence >
</ xs:complexType >
<I-- Recurrence = = =
->
<xs:complexType name =" RecurrenceType ">
<xs:complexContent >
<xs:extension base ="fault:RateType ">
</ xs:complexContent >
</ xs:complexType >
<l-- S||p —=== = = = -=>
<xs:complexType name =" SlipType ">
<xs:sequence >
<xs:element name ="SlipRate " type ="fault:SlipRateType "
minOccurs ="0"/>
<xs:element name="SlipType " type ="fault:SlipTypeType "
minOccurs ="0"/>
</ xs:sequence >
</ xs:complexType >
<xs:complexType name =" SlipRateType ">
<xs:complexContent >
<xs:extension base ="fault:RateType ">
</ xs:complexContent >
</ xs:complexType >
<xs:complexType name =" SlipTypeType ">
<xs:choice minOccurs ="0">
<xs:element name =" StrikeSlip " type ="fault:RateType "
minOccurs ="0"/>
<xs:element name ="DipSlip " type ="fault:RateType "
minOccurs =" 0"/>
</ xs:choice >
</ xs:complexType >
<l-- D|p: —— >
<xs:complexType name =" DipRateType ">
<xs:complexContent >
<xs:extension base ="fault:RateType ">
</ xs:complexContent >
</ xs:complexType >
<I-- Strike --
>
<xs:complexType name =" StrikeRateType ">
<xs:complexContent >
<xs:extension base ="fault:RateType ">
</ xs:complexContent >
</ xs:complexType >
<xs:element name ="Layer " type ="fault:LayerType ">
<xs:complexType name =" LayerType ">
<xs:sequence >
<xs:element ref ="fault:Interpld ">
<xs:element name ="Layerld " type ="xs:int " minOccurs ="0"/>
<xs:element name="LayerName" type ="xs:string "

minOccurs ="0"/>

213

minOccurs

minOccurs

minOccurs

minOccurs

minOccurs

minOccurs

minOccurs

minOccurs

minOccurs

<xs:.element

"0"/>

="0"/>

"0/

"0"/>

"0/

="0"/>

"0"/>

"0"/>

"0"/>

<xs:.element

<xs:.element

<xs:.element
<xs:element

<xs:element
<xs:.element
<xs:element
<xs:.element
<xs:.element

<xs:element
<xs:.element

<xs:.element

<xs:.element

<xs:.element

</ xs:sequence >
</ xs:complexType >

</ xs:schema >

name =" Coordinates

name =" LatOrigin " type ="gml:PointPropertyType "

name =" LonOrigin " type ="gml:PointPropertyType "

name =" Datum" type ="xs:string " minOccurs ="0"/>
name =" Origin " type ="gml:PointPropertyType "
name =" Length " type ="xs:float " minOccurs ="0"/>
name =" Width " type ="xs:float " minOccurs ="0"/>
name =" Depth " type ="xs:float " minOccurs ="0"/>
name =" LameLambda" type ="xs:float "

name =" LameLambdaUnits " type ="xs:string "

name =" LameMUd type ="xs:float " minOccurs ="0"/>

name =" LameMuUnits " type ="xs:string "

name =" Viscosity ="xs:float "

" type

name =" ViscosityUnits " type ="xs:string

name =" ViscosityExponent " type ="xs:float "

" type ="gml:LineStringPropertyType ">

214

A.2 GPS Station Schema

This XML Schema imports GML 2.1 schemas to describe metadetat ahe GPS

Stations.

Figure A-3 GPS Station Schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmins:xs =" http://www.w3.0rg/2001/XMLSchema

xmlns:gml =" http://www.opengis.net/gml " elementFormDefault =" qualified
attributeFormDefault =" unqualified ">

<xs:import namespace =" http://www.opengis.net/gml " schemalocation ="F:\
schemas\ogc_schemas\gmi\2.1.2\feature.xsd ">

<xs:import namespace =" http://www.opengis.net/gml " schemalocation ="F:\
schemas\ogc_schemas\gmi\2.1.2\geometry.xsd ">

<xs:element name =" GPS_Site ">
<xs:annotation >
<xs:documentation >Permanent GPS Site
Information </ xs:documentation >
</ xs:annotation >
<xs:complexType >
<xs:sequence >
<xs:element name ="SiteCode " type ="xs:string "/>
<xs:element name =" SiteName " type ="xs:string "/>
<xs:element name =" Network " type ="xs:string "/>
<xs:element name="City " type ="xs:string "/>

215

<xs:element name="County " type ="xs:string "/>
<xs:element name =" State " type ="xs:string "/>
<xs:element name ="Location " type ="gml:PointPropertyType ">
<xs:element name =" DataLink " minOccurs ="0">
<xs:complexType >
<xs:sequence >
<xs:element name =" DataAddress " minOccurs ="0">
<xs:complexType >
<xs:simpleContent >
<xs:extension base ="xs:string ">
<xs:attribute name =" type "
type ="xs:string "/>
</ xs:extension >
</ xs:simpleContent >
</ xs:complexType >
</ xs:element >
<xs:element name =" NBAddress " minOccurs ="0"

maxOccurs =" unbounded ">
<xs:complexType >
<xs:sequence minOccurs ="0">
<xs:element name =" NBHost"

type ="xs:string " minOccurs ="0"/>

<xs:element name =" NBPort "
type ="xs:string " minOccurs ="0"/>

<xs:element name =" NBTopic "
type ="xs:string " minOccurs ="0"/>

</ xs:sequence >
<xs:attribute name =" type "
type ="xs:string "/>
</ xs:complexType >
</ xs:element >
</ xs:sequence >
</ xs:complexType >
</ xs:element >
</ xs:sequence >
</ xs:complexType >
</ xs:element >
</ xs:schema >

A.3 Seismicity Schema

Following schema describes the metadata about the seismic &asetds on several

formats. Note the location elements are constructed from GML types.

216

Figure A-4 — Seismicity schema for describing eartjuakes and related metadata

217

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSPY V5 rel. 2 U (http://www.xmlspy.com) by Galip Aydin -->
<schema xmlns:seismicity =" http://mastar.ucs.indiana.edu/seismicity "
xmins:xlink =" http://www.w3.0rg/1999/xlink "
xmins:gml =" http://www.opengis.net/gml " xmins =" http://www.w3.0rg/2001/XMLSchema "
targetNamespace =" http://mastar.ucs.indiana.edu/seismicity "
elementFormDefault =" qualified " version ="3.0">
<!-- import GML 2.1.2 feature and geometry schemas -->
<import namespace =" http://www.opengis.net/gmi "
schemalocation =" F:\phd\schemas\ogc_schemas\gmi\2.1.2\geometry.xsd ">
<import namespace =" http://www.opengis.net/gmi "
schemalocation =" F:\phd\schemas\ogc_schemas\gmi\2.1.2\feature.xsd ">
<element name =" SeismicEvent " type =" seismicity:SeismicEventType ">
<complexType name =" SeismicEventType ">
<sequence minOccurs ="0">
<element name =" Date ">
<complexType >
<sequence minOccurs ="0">
<element name="Year" minOccurs ="0"/>
<element name ="Month" minOccurs ="0"/>
<element name =" Day" minOccurs ="0"/>
</ sequence >
<attribute name =" DateContent "/>
</ complexType >
</ element >
<element name =" Time">
<complexType >
<sequence minOccurs ="0">
<element name ="Hour" minOccurs ="0"/>
<element name =" Minute " minOccurs ="0"/>
<element name =" Second" minOccurs ="0"/>
</ sequence >
<attribute name =" TimeContent "/>
</ complexType >
</ element >
<element name ="Location " type ="gml:PointPropertyType ">
<element name =" Latitude " type ="gml:PointPropertyType "
minOccurs ="0"/>
<element name =" Longitude " type ="gml:PointPropertyType "
minOccurs =" 0"/>
<element name =" Quality ">
<annotation >
<documentation >SCSN - SCEDC
[location quality
‘A" +- 1 km horizontal distance
+- 2 km depth
'B' +- 2 km horizontal distance
+- 5 km depth
'C' +- 5 km horizontal distance
no depth restriction
‘D' >+- 5 km horizontal distance
'Z' no quality listed in database] </ documentation >
</ annotation >
<simpleType >

<restriction base ="string ">
<enumeration value ="A"/>
<enumeration value ="B"/>
<enumeration value ="C'/>
<enumeration value ="D'>
<enumeration value ="Z"/>
<enumeration value ="E"'/>
<enumeration value ="P"/>

</ restriction >

218

</ simpleType >
</ element >

<element name =" Magnitude " type ="string

<element name =" MagnitudeType
<annotation >

minOccurs

<documentation >SCEDC

[type of magnitude
‘e energy magnitude
'w' moment magnitude
'b' body-wave magnitude
's' surface-wave magnitude
'I'local (WOOD-ANDERSON) magnitude
'c' coda amplitude
'h" helicorder magnitude (short-period Benioff)
'd' coda duration magnitude
'n' no magnitude] </ documentation >
</ annotation >
<simpleType >
<restriction base =
<enumeration
<enumeration
<enumeration
<enumeration
<enumeration
<enumeration
<enumeration
<enumeration
<enumeration
</ restriction >
</ simpleType >
</ element >
<element name =" Depth " type ="string
<annotation >

string
value
value
value
value
value
value
value
value
value

"

<documentation >kilometers

</ annotation >
</ element >
<element name =" NPH>
<complexType >
<simpleContent >

Il/>
="0">

">

="e"l>
="w'/>
"b"/>
"s"/>
">
"c">
"h"/>
"d"/>
"n"/>

</ documentation

<extension base ="int "/>

</ simpleContent >
</ complexType >
</ element >
<element name ="RMS type ="float "
<annotation >

minOccurs ="0">

<documentation >root mean square of travel

times </ documentation >
</ annotation >
</ element >
<element name="Eventld " type ="int

<element name =" EventType " minOccurs

<annotation >

">

<documentation >SCEDC

[local (le)(re)(ts)blast (gb)boom (sn)blast (nt)event (uk)]
</ annotation >
<simpleType >

<restriction base ="string
<enumeration value
<enumeration value
<enumeration value
<enumeration value
<enumeration value
<enumeration value

219

="0">

</ documentation

">

"le "I>
"re ">
"ts "/>
"gb"/>
"sn"/>
="nt"/>

<enumeration value ="uk"/>
</ restriction >
</ simpleType >
</ element >
<element name="NGRMtype ="int " minOccurs ="0">
<annotation >
<documentation >SCEDC [Number Of Grams (i.e. #
of station traces)] </ documentation >
</ annotation >
</ element >
</ sequence >
</ complexType >
<element name =" Catalog ">
<complexType >
<sequence minOccurs ="0">
<element ref ="seismicity:SeismicEvent " minOccurs ="0"
maxOccurs =" unbounded "/>
</ sequence >
</ complexType >
</ element >
<l-- This Schema is based on GML 2.1.2 and supports following formats -->
<I-- SCSN (SOUTHERN CALIFORNIA SEISMOGRAPHIC NETWORK FORMATF}>
<l-- SCEDC (SOUTHERN CALIFORNIA EARTHQUAKE DATA CENTER CATALOG FORMAB
</ schema>

220

Appendix B

XML Files

In this section we give several sample XML files used or generated By WF

B.1 Sample GetFeature Request

<?xml version="1.0" encoding="is0-8859-1"?>
<wfs:GetFeature
outputFormat =" GMLZ2 :gml =" http://www.opengis.net/gml ":wfs =" http://www.op
engis.net/wfs ":ogc =" http://www.opengis.net/ogc ">
<wfs:Query typeName ="fault ">
<wfs:PropertyName >name</ wfs:PropertyName >
<wfs:PropertyName >segment </ wfs:PropertyName >
<wfs:PropertyName >author </ wfs:PropertyName >
<wfs:PropertyName >coordinates </ wfs:PropertyName >
<ogc:Filter >
<ogc:BBOX>
<ogc:PropertyName >coordinates </ ogc:PropertyName >
<gml:Box >
<gml:coordinates >-150,30 -100,50 </ gml:coordinates >
</ gml:Box >
</ ogc:BBOX >
</ ogc:Filter >
</ wfs:Query >
</ wfs:GetFeature >

B.2 Sample GetFeature Response

<?xml version="1.0" encoding="UTF-8"?>

<wfs:FeatureCollection xmins:wfs =" http://www.opengis.net/wfs "
xmins:gml =" http://www.opengis.net/gml "

xmins:xsi =" http://www.w3.0rg/2001/XMLSchema-instance "
xsi:schemalocation =" http://complexity.ucs.indiana.edu/~gaydin/wfs
C:/Projects/WFS/xml/schemas/fault_new.xsd
http://complexity.ucs.indiana.edu/~gaydin/ogc/origi nal/wfs/1.0.0/WFS-

basic.xsd ">
<gml:boundedBy >
<gml:Box srsName =" http://www.opengis.net/gml/srs/epsg.xml#27354 ">
<gml:coordinates decimal ="."c¢cs ="," ts =" ">>-119.31,35-
118,38 </ gml:coordinates >
</ gml:Box >
</ gml:boundedBy >
<gml:featureMember >
<fault >
<name>White Wolf </ name>
<segment >5.0 </ segment >
<author >Rundle J. B. </ author >

<gml:lineStringProperty >
<gml:LineString srsName ="null ">
<gml:coordinates >-118.65,35.26 -118.56,35.31 </ gml:coordinates

221

</ gml:LineString >
</ gml:lineStringProperty >
</ fault >
</ gml:featureMember >
<gml:featureMember >
<fault >
<name>White Wolf </ name>
<segment >4.0 </ segment >
<author >Rundle J. B. </ author >
<gml:lineStringProperty >
<gml:LineString srsName ="null ">
<gml:coordinates >-118.73,35.21 -118.65,35.26
</ gml:LineString >
</ gml:lineStringProperty >
</ fault >
</ gml:featureMember >
<gml:featureMember >
<fault >
<name>White Wolf </ name>
<segment >3.0 </ segment >
<author >Rundle J. B. </ author >
<gml:lineStringProperty >
<gml:LineString srsName ="null ">
<gml:coordinates >-118.82,35.15 -118.73,35.21
</ gml:LineString >
</ gml:lineStringProperty >
</ fault >
</ gml:featureMember >
<gml:featureMember >
<fault >
<name>White Wolf </ name>
<segment >2.0 </ segment >
<author >Rundle J. B. </ author >
<gml:lineStringProperty >
<gml:LineString srsName ="null ">
<gml:coordinates >-118.9,35.1 -118.82,35.15
</ gml:LineString >
</ gml:lineStringProperty >
</ fault >
</ gml:featureMember >
<gml:featureMember >
<fault >
<name>White Wolf </ name>
<segment >1.0 </ segment >
<author >Rundle J. B. </ author >
<gml:lineStringProperty >
<gml:LineString srsName ="null ">
<gml:coordinates >-118.99,35.05 -118.9,35.1
</ gml:LineString >
</ gml:lineStringProperty >
</ fault >
</ gml:featureMember >
<gml:featureMember >
<fault >
<name>White Mountains </ name>
<segment >10.0 </ segment >
<author >Rundle J. B. </ author >

222

</ gml:coordinates

</ gml:coordinates

</ gml:coordinates

</ gml:coordinates

>

>

>

>

<gml:lineStringProperty >

<gml:LineString srsName ="null ">
<gml:coordinates >-118.19,37.14 -118.17,37.05 </ gml:coordinates
</ gml:LineString >
</ gml:lineStringProperty >
</ fault >

</ gml:featureMember >
<gml:featureMember >
<fault >
<name>White Mountains </ name>
<segment >9.0 </ segment >
<author >Rundle J. B. </ author >

<gml:lineStringProperty >
<gml:LineString srsName ="null ">
<gml:coordinates >-118.2,37.23 -118.19,37.14 </ gml:coordinates
</ gml:LineString >
</ gml:lineStringProperty >
</ fault >

</ gml:featureMember >
<gml:featureMember >
<fault >
<name>White Mountains </ name>
<segment >8.0 </ segment >
<author >Rundle J. B. </ author >

<gml:lineStringProperty >
<gml:LineString srsName ="null ">
<gml:coordinates >-118.22,37.32 -118.2,37.23 </ gml:coordinates
</ gml:LineString >
</ gml:lineStringProperty >
</ fault >

</ gml:featureMember >
<gml:featureMember >
<fault >
<name>White Mountains </ name>
<segment >7.0 </ segment >
<author >Rundle J. B. </ author >

<gml:lineStringProperty >

<gml:LineString srsName ="null ">
<gml:coordinates >-118.24,37.41 -118.22,37.32 </ gml:coordinates

</ gml:LineString >

</ gml:lineStringProperty >

</ fault >
</ gml:featureMember >
</ wfs:FeatureCollection >

B.3 GetCapabilities Request

<?xml version="1.0" encoding="1S0O-8859-1"?>
<GetCapabilities version ="1.0.0 "/>

B.4 Sample GetCapabilities Response

<?xml version="1.0" encoding="UTF-8"?>
<WFS_Capabilities xmlns =" http://www.opengis.net/wfs " version ="1.0.0 ">
<Service >

223

<Name>Web Feature Service </ Name>
<Title >WFS@qgf1:7474</ Title >
<Abstract ></ Abstract >
<Keywords >WFS, OGC, Web Services </ Keywords >
<OnlineResource xmlins:xsi =" http://www.w3.0rg/2001/XMLSchema-instance "
xsiitype ="java:java.lang.String "> http://gfl.ucs.indiana.edu:7474/axis/services/
wfs?wsdl </ OnlineResource >
<Fees >None</ Fees >
<AccessConstraints >None</ AccessConstraints >
</ Service >
<Capability >
<Request >
<GetCapabilities >
<DCPType>
<HTTP>
<Get
onlineResource =" http://gfl.ucs.indiana.edu:7474/axis/services/wfs?wsdl ">
<Post
onlineResource =" http://gfl.ucs.indiana.edu:7474/axis/services/wfs?wsdl ">
</ HTTP>
</ DCPType>
</ GetCapabilities >
<DescribeFeatureType >
<SchemaDescriptionLanguage >
<XMLSCHEMA
</ SchemaDescriptionLanguage >
<DCPType>
<HTTP>
<Get
onlineResource =" http://gfl.ucs.indiana.edu:7474/axis/services/wfs?wsdl ">
<Post
onlineResource =" http://gfl.ucs.indiana.edu:7474/axis/services/wfs?wsdl ">
</ HTTP>
</ DCPType>
</ DescribeFeatureType >
<GetFeature >
<ResultFormat >
<GMLZ>
</ ResultFormat >
<DCPType>
<HTTP>
<Get
onlineResource =" http://gfl.ucs.indiana.edu:7474/axis/services/wfs?wsdl ">
<Post
onlineResource =" http://gfl.ucs.indiana.edu:7474/axis/services/wfs?wsdl ">
</ HTTP>
</ DCPType>
</ GetFeature >
</ Request >
<VendorSpecificCapabilities >WSDL-SOAPE/ VendorSpecificCapabilities >
</ Capability >
<FeatureTypeList >
<FeatureType >
<Namerivers </ Name>
<Title >California Rivers Feature Type </ Title >
<Abstract >A Feature that has coordinate information of california
rivers </ Abstract >
<Keywords >California,River,Rivers, WFS </ Keywords >
<SRS>EPSG:4326</ SRS>
<Operations >
<Query />
</ Operations >

224

<LatLongBoundingBox minx ="-124.275833 " miny ="35.389717 " maxx ="-118.075287 "
maxy="41.472763 "/>
</ FeatureType >
<FeatureType >
<Name>fault </ Name>

<Title >California Fault data </ Title >
<Abstract >California Fault data provided by USC </ Abstract >
<Keywords >California,Fault,Segment, WFS </ Keywords >

<SRS>NULL</ SRS>
<Operations >
<Query />
</ Operations >
<LatLongBoundingBox minx ="-124.41 " miny ="31.89 " maxx ="-114.64 "
maxy="40.2 "/>
</ FeatureType >
<FeatureType >
<Name>europe </ Name>
<Title >europe borders </ Title >
<Abstract />
<Keywords >europe,wfs </ Keywords >
<SRS>EPSG:4326</ SRS>
<Operations >
<Query />
</ Operations >
<LatLongBoundingBox minx ="-31.291612 " miny ="-31.291612 " maxx ="44.834987 "
maxy="71.181357 "/>
</ FeatureType >
<FeatureType >
<Name>states </ Name>
<Title >US States Boundaries </ Title >
<Abstract >Borders for states </ Abstract >
<Keywords >borders,states </ Keywords >
<SRSnull </ SRS
<Operations >
<Query />
</ Operations >
<LatLongBoundingBox minx ="-178.21759836237 " miny ="18.921786345087 " maxx ="-
67.007718759568 " maxy =" 71.406235353271 "/>
</ FeatureType >
<FeatureType >
<Name>scsn </ Name>

<Title >California Earthquake Data in SCSN Format </ Title >
<Abstract >Earthquake data </ Abstract >
<Keywords >California,Earthquake, WFS </ Keywords >

<SRS>EPSG:4326</ SRS>
<Operations >
<Query />

</ Operations >

<LatLongBoundingBox minx ="32" miny ="-122 " maxx =" 37" maxy ="-114 "/>
</ FeatureType >
<FeatureType >

<Name>scedc </ Name>

<Title >California Earthquake Data in SCEDC Format </ Title >
<Abstract >Earthquake data </ Abstract >
<Keywords >California,Earthquake, WFS </ Keywords >

<SRS*EPSG:4326</ SRS>
<Operations >
<Query />
</ Operations >
<LatLongBoundingBox minx ="-122.000 " miny ="-122.000 " maxx ="78.600 "
maxy="37.000 "/>
</ FeatureType >
<FeatureType >

225

<Name>boundary_lines </ Name>

<Title >California State Boundary Lines </ Title >
<Abstract />
<Keywords >California.Boundary </ Keywords >

<SRS>EPSG:4321</ SRS
<Operations >
<Query />
</ Operations >
<LatLongBoundingBox minx ="-124.376663 " miny ="-124.376663 " maxx =" -
118.074822 " maxy =" 38.088043 "/>
</ FeatureType >
<FeatureType >
<Name>city </ Name>
<Title >USA City Locations </ Title >
<Abstract />
<Keywords />
<SRS>NULL</ SRS>
<Operations >
<Query />
</ Operations >
<LatLongBoundingBox minx ="-157.82343908739 " miny ="21.305784962263 " maxx ="-
71.089115 " maxy ="61.1919 "/>
</ FeatureType >
<FeatureType >
<Name>tsunami_clusters </ Name>
<Title >Tsunami Hotspot Clusters </ Title >
<Abstract />
<Keywords />
<SRS>SR&/ SRS>
<Operations >
<Query />
</ Operations >
<LatLongBoundingBox minx ="-180 " miny ="-60.5 " maxx ="179" maxy =" 62"/>
</ FeatureType >
<FeatureType >
<Name>LANL DEMG:/ Name>
<Title >LANL</ Title >
<Abstract >Earthquake data </ Abstract >
<Keywords >LANL</ Keywords >
<SRSnull </ SRS
<Operations >
<Query />
</ Operations >
<LatLongBoundingBox minx ="-85.758003234863 " miny ="25.363000869751 "
maxx="30.700000762939 " maxy =" 30.700000762939 "/>
</ FeatureType >
<FeatureType >
<Name>LANL DEMG/ Name>
<Title >LANL</ Title >
<Abstract >IEISS Inout Data</ Abstract >
<Keywords >LANL</ Keywords >
<SRS>null </ SRS>
<Operations >
<Query />
</ Operations >
<LatLongBoundingBox minx ="-83.932197570801 " miny ="25.363000869751 " maxx ="-
80.165802001953 " maxy =" 30.700000762939 "/>
</ FeatureType >
<FeatureType >
<Name>sopac </ Name>
<Title >SOPAC GPS Stations </ Title >
<Abstract >Metadata About the SCIGN GPS station</ Abstract >
<Keywords >California,Earthquake, WFS </ Keywords >

226

<SRSSWGS84/ SRS>
<Operations >
<Query />
</ Operations >
<LatLongBoundingBox minx ="32.84073385 " miny ="-118.33381483 "
maxx="33.9347574 " maxy ="-115.52137107 "/>
</ FeatureType >
</ FeatureTypeList >
<ogc:Filter_Capabilities xmins:ogc =" http://www.opengis.net/ogc ">
<ogc:Spatial_Capabilities >
<ogc:Spatial_Operators >
<ogc:BBOX/>
</ ogc:Spatial_Operators >
</ ogc:Spatial_Capabilities >
<ogc:Scalar_Capabilities >
<ogc:Arithmetic_Operators >
<ogc:Simple_Arithmetic />
</ ogc:Arithmetic_Operators >
</ ogc:Scalar_Capabilities >
</ ogc:Filter_Capabilities >
</ WFS_Capabilites >

B.5 Sample Mapping File

Following XML mapping file is used by the WFS to map MySQL gquessults into

GML documents.

<?xml version="1.0" encoding="UTF-8"?>
<MapElements xmlins:xsi =" http:/SeismicEvent/www.w3.0rg/2001/XMLSchema-instance ">

<MapElement No =" 0" XSDNodeXPath =" /SeismicEvent/Date/Year "
DBColumnName=" YEAR></ MapElement >

<MapElement No ="1" XSDNodeXPath =" /SeismicEvent/Date/Month "
DBColumnName=" MONTH></ MapElement >

<MapElement No ="2" XSDNodeXPath =" /SeismicEvent/Date/Day "
DBColumnName=" DAY'></ MapElement >

<MapElement No =" 3" XSDNodeXPath =" /SeismicEvent/Time/Hour "
DBColumnName=" HOUR></ MapElement >

<MapElement No ="4" XSDNodeXPath =" /SeismicEvent/Time/Minute "
DBColumnName=" MINUTE'></ MapElement >

<MapElement No ="5" XSDNodeXPath =" /SeismicEvent/Time/Second "
DBColumnName=" SECOND></ MapElement >

<MapElement No ="5" XSDNodeXPath =" /SeismicEvent/EventType "
DBColumnName=" ET'></ MapElement >

<MapElement No =" 6" XSDNodeXPath =" /SeismicEvent/Magnitude "
DBColumnName=" MAGNITUDE></ MapElement >

<MapElement No ="7" XSDNodeXPath =" /SeismicEvent/MagnitudeType "
DBColumnName=" MAGNITUDE_TYPEB</ MapElement >

<MapElement No =" 8"
XSDNodeXPath="/SeismicEvent/Location/gml:Point/gml:coord/gml:X "
DBColumnName=" LATITUDE"></ MapElement >

<MapElement No =" 9"
XSDNodeXPath="/SeismicEvent/Location/gml:Point/gml:coord/gml:Y "
DBColumnName=" LONGITUDE></ MapElement >

<MapElement No =" 10" XSDNodeXPath =" /SeismicEvent/Depth "
DBColumnName=" DEPTH></ MapElement >

<MapElement No ="11" XSDNodeXPath =" /SeismicEvent/Quality "
DBColumnName=" QUALITY"></ MapElement >

<MapElement No =" 12" XSDNodeXPath =" /SeismicEvent/Eventld "
DBColumnName=" EVID"></ MapElement >

227

<MapElement No =" 13" XSDNodeXPath =" /SeismicEvent/NPH
DBColumnName=" NPH></ MapElement >

<MapElement No =" 14" XSDNodeXPath =" /SeismicEvent/NGRM
DBColumnName=" NGRNM></ MapElement >
</ MapElements >

B.6 Sample Feature Configuration File
Following configuration file is used by the WFS for obtaining database, scaedother

information about a feature.

<?xml version="1.0" encoding="UTF-8"?>

<feature >
<db>
<type >mySQI</ type >
<serveraddress >gf8.ucs.indiana.edu </ serveraddress >

<dbname>cce </ dbname>
<tablename >scedc </ tablename >
<driver >com.mysql.jdbc.Driver </ driver >
<username >galip </ username >
<password >password </ password >
</ db>
<xml_instance >
<localaddress >C:/projects/newprojects/wfs-
streaming/xml/galip/seismicity/seismic_instance.xml </ localaddress >
</ xml_instance >
<map_file >
<localaddress >C:/projects/newprojects/wfs-
streaming/xml/galip/seismicity/scedc_mapping.xmi </ localaddress >
</ map_file >
<xmlschema >
<localaddress >C:/projects/newprojects/wfs-
streaming/xml/schemas/seismicity.xsd </ localaddress >
</ xmlschema >
<maxmin_column_names >
<minx >LONGITUDE/ minx >
<miny >LATITUDE</ miny >
<maxx>LONGITUDE/ maxx>
<maxy>LATITUDE</ maxy>
</ maxmin_column_names >
<Metadata >
<Name>scedc </ Name>

<Title >California Earthquake Data in SCEDC Format </ Title >
<Abstract >Earthquake data </ Abstract >
<Keywords >California, Earthquake, WFS </ Keywords >

<SRS>EPSG:4326</ SRS>
<Operations >
<Operation type ="Query"/>
</ Operations >
<MetadataURL >http://www.crisisgrid.org </ MetadataURL >
</ Metadata >
</ feature >

B.7 Sample GML instance
Following file is used by the WFS to map MySQL query results into GML documents

<?xml version="1.0" encoding="UTF-8"?>

228

<GPS_Site xmins:gml =" http://www.opengis.net/gml "
xmins:xsi =" http://www.w3.0rg/2001/XMLSchema-instance "
xsi:noNamespaceSchemalocation =" C:\projects\wfs\schemas\GPS_Site.xsd
<SiteCode ></ SiteCode >
<SiteName ></ SiteName >
<Network ></ Network >
<City ></ City >
<County ></ County >
<State ></ State >
<Location >
<gml:Point srsName ="WGS84>
<gml:coord >
<gml:X ></ gml:X >
<gmlY ></ gmlY >
</ gml:coord >
</ gml:Point >
</ Location >
<DatalLink >
<DataAddress type =" Streaming "></ DataAddress >
<NBAddress >
<NBHost></ NBHost >
<NBPort ></ NBPort >
<NBTopic ></ NBTopic >
</ NBAddress >
</ DataLink >
</ GPS_Site >

229

© o~

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

Bibliography

[AHD], geography. (n.d.). The American Heritage® Dictionary of the English
Language, Fourth Edition. Retrieved November 05, 2006, from Dictionary.com
website:http://dictionary.reference.com/browse/geography

Peng, Z.R. and M. Tsounternet GIS: Distributed Geographic Information
Services for the Internet and Wireless Netwo2k3: Wiley.

FGDC. The Federal Geographic Data Committee, Data & Services:
http://www.fgdc.gov/dataandservicegcited.

Smith, T.R.A digital library for geographically referenced materiaSomputer,
1996.29(5): p. 54.

Zao Liu, Marlon Pierce, and G. Fo&oncurrent Web Map Cache Server,
Community Grids Lab Presentation, Available from
http://grids.ucs.indiana.edu/ptliupages/presentations/CacheServe? ppd.

ESRI, ArcIMS, 9 Architecture and Functionality, J-8694. ESRI White Paper,
http://downloads.esri.com/support/whitepapers/ims_/arcims9-architecture.pdf
2004.

AutodeskMapGuidehttp://usa.autodesk.cam]cited.

MapServer, Whttp://www.wthengineering.com/GIS/web_gis.htijeited.

Inc, E.,.ESRI Shapefile Technical Description, An ESRI White Paper—July 1998
1998, URL:http://www.esri.com/library/whitepapers/pdfs/shapefile. pdf

Cox, S., et al.,Geography Markup Language (GML) 2.0, OpenGIS®
Implementation Specification, 20 February 2001, OGC Document Number: 01-
029 2001.

GeoCommunity. Web Site: http://www.geocomm.com/ Last accessed on
12/17/2006 [cited.

Di, L., et al.,The Integration of Grid Technology with OGC Web Services (OWS)
in NWGISS for NASA EOS Daia GGF8 & HPDC122003: Seattle, USA. . p.
24-27.

Fox, G. and M. Pierc®&/eb Service Grids for iISERV{ International Workshop
http://www.eps.s.u-tokyo.ac.jp/jp/COE21/events/20041014opdiGeodynamics:
Observation, Modeling and Computer Simulation University of Tokyo Japan
October 14 20042004.

de La Beaujardiere, JWeb Map Service, OGC project document reference
number OGC 04-0242004.

Vretanos, P. (2002)eb Feature Service Implementation Specification, OpenGIS
project document: OGC 02-058, version 1.0Mdlume,

Cox, S., et al. (20030penGIS Geography Markup Language (GML)
Implementation Specification, OpenGIS project document reference nui@iaer O
02-023r4, Version 3.0Volume,

Sayar, A., M. Pierce, and G. F®QGC Compatible Geographical Information
Servicesin Indiana Computer Science Report TR62005.

Cox, S. (2003pbservations and Measuremeni¢olume, DOI: OGC 03-022r3
Butler, D.,2020 computing: Everything, everywheiature, 2006440 p. 402-
405.

230

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Gibbons, P.B., et alrisNet: an architecture for a worldwide sensor WHBEE,
Pervasive Computing, , 20044): p. 22-33.

Akyildiz, I.F., et al.,A Survey on Sensor NetworkEEE Communications
Magazine, 2002.

Akyildiz, I.F., et al. Wireless sensor networks: a surv@®02, Elsevier. p. 393-
422.

Estrin, D., et alNext Century Challenges: Scalable Coordination in Sensor
Networks in Fifth Annual International Conference on Mobile Computing and
Networks (MobiCOM '99)1999. Seattle, Washington.

Mainwaring, A., et al.Wireless sensor networks for habitat monitori2@02,
ACM Press New York, NY, USA. p. 88-97.

Mainwaring, A., et alWireless sensor networks for habitat monitoring
Proceedings of the 1st ACM international workshop on Wireless sensarket
and application®2002: ACM Press New York, NY, USA.

Pottie, G.J. and W.J. KaiserWireless integrated network sensors.
Communications of the ACM 20083(5): p. 51-58.

Zerger, A. and D.l. Smitnhmpediments to using GIS for real-time disaster
decision supportComputers, Environment and Urban Systems, 2Q0@): p.
123-141.

Reichardt, M.,Sensor Web Enablement:. An OGC White Pa@&05, Open
Geospatial Consortium (OCG), Inc.

Fox, G.,Grids of Grids of Simple Service€omputing in Science and Engg.,
2004.6(4): p. 84-87.

Kelvin K. Droegemeier, et aLinked environments for atmospheric discovery
(LEAD): A cyberinfrastructure for mesoscale meteorology reseaacil
education in 20th Conf. on Interactive Information Processing Systems for
Meteorology, Oceanography, and Hydrolog2004. Seattle, WA.

Beth Plale, et alCASA and LEAD: Adaptive Cyberinfrastructure for Real-Time
Multiscale Weather ForecastingEE Computer, 20089(11): p. 56-64.

Beth Plale, Rahul Ramachandran, and S. TaData, Management Support for
Adaptive Analysis and Prediction of the Atmosphere in LEAD 22nd
Conference on Interactive Information Processing Systems for Metearology
Oceanography, and Hydrology (IIPS2006.

Beth Plale, D.G., Jay Alameda, Bob Wilhelmson, Shawn Hampton, Al, Rossi
Kelvin DroegemeierActive Management of Scientific DatdEEE Internet
Computing, special issue on Internet Access to Scientific RaGH.9(1): p. 27-
34.

Kelvin K. Droegemeier, et allLinked environments for atmospheric discovery
(LEAD): Architecture, Technology Roadmap and Deployment Strategy1st
Conference on Interactive Information Processing Systems for Metearology
Oceanography, and Hydrology2005.

Sgouros, T. (2004N DODS Quick Start Guide Version 1.5, available from
http://www.opendap.org/user/quick-html/quick.htidblume,

Cornillon, P., J. Gallagher, and T. Sgourd$eNDAP: Accessing data in a
distributed, heterogeneous environmebData Science Journal, 2003&. p. 164-
174.

231

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

47.

48.

49.

50.

51.

52.

53.

54.

Sgouros, T. (20040PeNDAP User Guide Version 1.14, available from
http://www.opendap.org/user/guide-html/guide.htiviblume,

Braun, H.W., et alDistributed Data Management Architecture for Embedded
Computing in 6th Workshop on High Performance Embedded Compu2iog2:
MIT Lincoln Laboratory.

Harvey, D., et al.,ORB: A New Real-Time Data Exchange and Seismic
Processing SysterBeis. Res. Lett. , 199869.

Rajasekar, A., et aVjrtual Object Ring Buffer: A Framework for Real-time Data
Grid., in HDPC Conference 200£2004.

Bustamante, F.E.The Active Streams Approach to Adaptive Distributed
Applications and Servicesn Computer Science2001, Georgia Institute of
Technology. p. 112.

Bustamante, F.E., G. Eisenhauer, and K. SchiMaa.Active Streams Approach
to Adaptive Distrubuted Systenmis 10th IEEE International Symposium on High
Performance Distributed Computing (HPDC-10 '01), 2020a01.

Eisenhauer, G., K. Schwan, and F.E. Bustamd&hiblish-subscribe for high-
performance computingEEE Internet Computing, 20060(1): p. 40-47.

Isert, C. and K. SchwaACDS: Adapting computational data streams for high
performancein 14th International Parallel & Distributed Processing Symposium
(IPDPS'00),. 2000. Cancun, Mexico: IEEE Computer Society 2000

Plale, B. and K. SchwadQUOB: Managing Large Data Flows Using Dynamic
Embedded Querigsin Ninth [EEE International Symposium on High
Performance Distributed Computing (HPDC-9 '02900. p. 263.

Vijayakumar, N. and B. PlaldQUOBEC event channel communication system
2005, Indiana University, Computer Science, Technical Report TR614.

Plale, B. and K. SchwaBbynamic querying of streaming data with the dQUOB
system.IEEE Transactions on Parallel and Distributed Systems, 2008): p.
422-432.

Bustamante, F., et &fficient wire formats for high performance computing
ACM/IEEE SC 2000 Conference (SC:af)O00.

Liu, Y., N.N. Vijayakumar, and B. Plal&tream Processing in Data-Driven
Computational Sciencein 7th IEEE/ACM Int'l Conference Grid Computing,
Grid'06. 2006. Barcelona, S.

Vijayakumar, N., Y. Liu, and B. Plal€alder Query Grid Service: Insights and
Experimental Evaluatianin Sixth IEEE International Symposium on Cluster
Computing and the Grid (CCGRID'Q&)006.

Golab, L. and M.T. Ozsussues in data stream manageme®EM SIGMOD
Record, 200332(2): p. 5-14.

Chandrasekaran, S., etEtlegraphCQ: continuous dataflow processimy2003
ACM SIGMOD international conference on Management of @fi83. San
Diego, California ACM Press New York, NY, USA.

Chandrasekaran, S., et B¢élegraphCQ: Continuous dataflow processing for an
uncertain world in First Biennial Conference on Innovative Data Systems
Research (CIDR)003. Asilomar, CA, USA.

Avnur, R. and J.M. Hellersteiiddies: continuously adaptive query processing.
ACM SIGMOD Record 200®9(2): p. 261-272.

232

55.

56.

S7.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

Babcock, B., et aModels and issues in data stream systam®roceedings of
the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on PBhasciof
database systen2902: ACM Press New York, NY, USA.

Plale, B.,Using global snapshots to access data streams on the 20@4.
31653165): p. 191-201.

Plale, B., Framework for bringing data streams to the gri&cientific
Programming 200412(4): p. 213-223.

Granat, R.Regularized Deterministic Annealing EM for Hidden Markov Mqdels
in University of California Los Angele2004.

Rabiner, L.R.A Tutorial on Hidden Markov Models and Selected Applications in
Speech RecognitioRroceedings of the IEEE, 1989(2): p. 257-286.

Granat, R.A. A method of hidden Markov model optimization for use with
geophysical data set€omp. Sci., 2003(2659): p. 892-901.

Granat, R.A.Statistical Analysis of Geodetic Networks for Detecting Regional
Events in 4th International ACES Workshop004: Beijing, China 2004.

Holliday, J.R., et alA RELM earthquake forecast based on pattern informatics
in AGU Fall Meeting; 2005: San Francisco, California,.

Rundle, J.B., D.L. Turcotte, and R. SHCHERBAKOV, KLEIN, W., AND
SAMMIS, C. , Statistical physics approach to understanding the multiscale
dynamics of earthquake fault systeniRev. Geophys. , 20031(4).

Rundle, J.B., et alSelf-organization in leaky threshold systems: The influence of
near-mean field dynamics and its implications for earthquakes, neurobiology, and
forecasting. Proc. Natl. Acad. Sci. U. S. A., 20(28: p. 2514-2521.

Tiampo, K.F., Rundle, J. B., McGinnis, S. A., & Klein, WRattern dynamics
and forecast methods in seismically active regiéhse and Applied Geophysics

(PAGEOPH), 2002(159): p. 2429-2467

Tiampo, K.F., Rundle, J. B., McGinnis, S. A., Gross, S. J. & Klein, W.,,
Eigenpatterns in southern California seismicity.J.. Geophys. Res. , 2002.
107(B12): p. 2354.

K. Z. Nanjo, J.R.H., C. C. Chen, J. B. Rundle, and D. L. Turcdgplication of

a modified Pattern Informatics method to forecasting the locations of flaige
earthquakes in the central Japari,ectonophysics, 200824 p. 351-366.

Sayar, A., M. Pierce, and G.C. F®EVELOPING GIS VISUALIZATION WEB
SERVICES FOR GEOPHYSICAL APPLICATIONS ISPRS International
Society for Photogrammetry and Remote Sensing Workshop Commission || WG/2
2005: METU, Ankara, Turkey.

Sayar, A., et al.Developing a Web Service-Compatible Map Server for
Geophysical Applications available from
http://grids.ucs.indiana.edu/ptliupages/publications/acm-gis-sayarifis.

Bush, B.W. and J.H. P. Giguere, S. Linger, A. McCown, M. Salazar, C. Dnal
Visarraga, K. Werley, R. Fisher, S. Folga, M. Jusko, J. Kavicky, ELdvhore,

E. Portante, S. ShamsuddMISAC ENERGY SECTOR: Interdependent Energy
Infrastructure Simulation System (IEISB)NISAC Capabilities Worksho@003:
Portland, OR.

Thomas W. Meyer, et allhe Los Alamos Center for Homeland SecutitpS
ALAMOS SCIENCE, 200328.

233

72.
73.

74.
75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.
89.

90.
91.
92.

93.
94.

Hashimi, S., Service-Oriented Architecture Explained2004, O’'Reilly
http://dev2devbea. com/technologies/soa/articles/soa_hashimi, jsp, Apr.
Eugster, P.T.H., et allhe Many Faces of Publish/SubscriBe03. p. 114-131.

Cox, S.Observations and Measuremer2802. p. 02-027.

Botts, M.,Sensor model language (SensorML) for in-situ and remote sensors
specification 2002, discussion paper 02-026r4, Open GIS Consortium.
http://www. opengis. org/techno/discussions/02-026r4. pdf.

OGC,The Open Geospatial Consortium, Ihttp://www.opengeospatial.org/

Aydin, G., et alSERVOGrid Complexity Computational Environments (CCE)
Integrated Performance Analysig Grid Computing, 2005. The 6th IEEE/ACM
International Workshop ar2005: IEEE.

Christensen, E., et alyeb Services Description Language (WSDL) 2001,
March.

Belwood, T., L. Clement, and C. von RiegeyDI Version 3.0.1: UDDI Spec
Technical Committee Specification. Available frdtip://uddi.org/pubs/uddi-
v3.0.1-20031014.htn2003.

CGL. Community Grids Lab Web Sitdtp://communitygrids.iu.edu/index.php
[cited.

Aktas, M., et al.,Information Services for Grid/Web Service Oriented
Architecture (SOA) Based Geospatial Applications

Aktas, M., et al.Web Service Information Systems and ApplicatiorGGF-16
Global Grid Forum Semantic Grid Worksh@p06: Athens, Greece.

Aktas, M., G. Fox, and M. Pierdglanaging Dynamic Metadata as Conteixt
Istanbul International Computational Science and Engineering Conference
(ICCSE2005ttp://www.iccse.org) June 20052005.

Aktas, M., G. Fox, and M. Piercgn Architecture for Supporting Information in
Dynamically Assembled Semantic Gride05.

Aktas, M., G. Fox, and M. Piercénformation Services for Dynamically
Assembled Semantic Gridén Proceedings of 1st International Conference
http://kg.ict.ac.cn/SKG2005bn SKG2005 Semantics, Knowledge and Grid
Beijing China November 27-29 200505.

Aktas, M.S., G.C. Fox, and M. PiercBault tolerant high performance
Information Services for dynamic collections of Grid and Web sernadsre
Generation Computer Systems, 2083%3): p. 317-337.

MySql, A.B.,MySQL Database Server, WWW page, at URtp://www mysql.
com, last accessed on 12/17/2006

Kreger, H.Web Services Conceptual Architecture (WSCA 2@)1. p. 6-7.
Redmond, F.E.Dcom: Microsoft Distributed Component Object Model with
Cdrom 1997: IDG Books Worldwide, Inc. Foster City, CA, USA.

Microsystems, SJava Remote Method Invocation Specificat@e02.

Kirtland, M.,A Platform for Web Service2001, Jan.

Box, D., et al.Simple Object Access Protocol (SOAP) 1.1. W3C Note 08 May
2000

ISO/TC211Web Siténttp://www.isotc211.org [cited.

Fallside, D.C. and P. Walmsle¥ML Schema W3C Recommendation 28 October
2004, http://www.w3.0org/TR/xmIschema-@001. p. 2002-10.

234

95.
96.

97.
98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.
109.

110.

111.

112.

113.

114.

115.

116.

Vretanos, P.AFilter Encoding Implementation Specification. OGC 02-059. Ver
1.0. Q 2001. p. 02-059.

Rao, A.P., et alQverview of the OGC catalog interface specificatid®00.

Grant, L.B., et alQuakeTables: The Fault Database for Quake &i004.

Fox, G. and M. PiercEERVO Earthquake Science Grid summary of ISERVO
technology October 2004 in January 2005 report High Performance Computing
Requirements for the Computational Solid Earth Sciencig://www.geo-
prose.com/computational_SES.htedited by Ron Cohen and started at May
2004 workshop on Computational Geoinformatics

Donnellan, A., et al.Numerical simulations for active tectonic processes:
increasing interoperability and performance

JPL.GPS Data Files available fronftp://sideshow.jpl.nasa.gov/pub/mblast
visited on 12/17/20Q6 [cited.

SOPAC,GPS Time Series available froftp://garner.ucsd.edu/pub/timeserjes
last visited 12/17/2003.

USGS, GPS Time Series available from
http://pasadena.wr.usgs.gov/scign/Analysis/plotddsest visited 12/17/2006.
SCSN, format seismic records, available from
http://www.data.scec.org/ftp/catalogs/SC st visited 12/17/2006.

SCEDC, format seismic records, available from
http://www.data.scec.org/ftp/catalogs/SCEC 3t visited 12/17/2006.
Dinger-Shearer, format seismic records, avilable from
http://www.data.scec.org/ftp/catalogs/dinger-shearkst visited 12/17/2006.
Haukkson, format seismic records available from

http://www.data.scec.org/ftp/catalogs/haukssdtamst visited 12/17/2006.

Appel, V.L. and R.W. Claytoifhe Southern California Earthquake Data Center
(SCEDC): Update for 20042004.

Clark, J. and S. DeRosé&yIL Path Language (XPath) Version 11®99. p. 1999.
OGC OGC Filter Encoding Implementation Specification, OGC document
number 04-09%olume,

Pallickara, S. and G. FokaradaBrokering: A Middleware Framework and
Architecture for Enabling Durable Peer-to-Peer Grids Lecture Notes in
Computer Scienc003: Springer-Verlag.

Fox, G.Global multimedia collaboration systenm Collaborative Technologies
and Systems, 2005. Proceedings of the 2005 International Symposi2a06n

Uyar, A., et alService-Oriented Architecture for a Scalable Videoconferencing
Systemin Proceedings of IEEE International Conference on Pervasive Services
2005 (ICPS'05http://icps2005.cs.ucr.eddlly 2005, Santorini, Greec2005.

Uyar, A.,Scalable service oriented architecture for audio/video conferencing
2005, Syracuse.

Bush, B.W.,NISAC Interdependent Energy Infrastructure Simulation System,
Report LA-UR-04-77002004, Los Alamos National Laboratory.

OnEarthNASA OnEarth Web Map Service for global satellite images, available
at http://onearth.jpl.nasa.gov/

GaiaGIS Viewerhttp://www.thecarbonportal.net/

235

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

Gadgil, H., et al.Management of Data Streams for a Real Time Flood
Simulation 2004.

Gadgil, H., G. Fox, and S. PallickatdPSearch for Managing Distributed
Servicesin Work in Progress session at IEEE/ACM Cluster Computing and Grid
2005 Conference (CCGrid 200&ttp://www.cs.cf.ac.uk/ccgrid2009/ Cardiff,

UK May 2005 2005.

Gadgil, H., et alA Scripting based Architecture for Management of Streams and
Services in Real-time Grid Applications Proceedings of the IEEE/ACM Cluster
Computing and Grid 2005 Conference (CCGrid 2005). Cardiff, UK May .2005
2005.

Gadgil, H., et al.HPSearch: Service Management & Administration Tool
Abstract for VLAB Meeting Minnesota July 21-23 2(0305.

Davis, D. and M.P. Parashhatency Performance of SOAP Implementatioms
Cluster Computing and the Grid, 2002. 2nd IEEE/ACM International Symposium
on. 2002. p. 407-407.

Kohlhoff, C. and R. Steel&valuating SOAP for High Performance Business
Applications: Real-Time Trading Systemi& In proceedings of the 2003
International WWW Conferenc&003: Budapest, Hungary. p. 03-2002.

van Engelen, RConstructing Finite State Automata for High-Performance XML
Web Servicesin International Symposium on Web Services and Applications
(ISWS) 20042004.

van Engelen, R.A2ushing the SOAP envelope with Web services for scientific
computing in In proceedings of the International Conference on Web Services
(ICWS), 2003. Las Vegas, 2003.

Chiu, K., M. Govindaraju, and R. Bramldpvestigating the limits of SOAP
performance for scientific computingin High Performance Distributed
Computing, 2002. HPDC-11 20022002: IEEE

Goldman, O.XML Binary Characterization, W3C Working Group Note, Mar,
20052005.

Gudgin, M., et alSOAP Message Transmission Optimization Mechanism, W3C
Proposed Recommendation, Nov, 2023004.

Gudgin, M., et al.XML-binary Optimized Packaging, W3C Recommendation,
Jan, 20052005.

Liefke, H. and D. SuciXMill: an efficient compressor for XML datan ACM
SIGMOD international conference on Management of data, ZlD: ACM
Press New York, NY, USA.

Oh, S., et alOptimized communication using the SOAP infoset for mobile
multimedia collaboration applicationsin Collaborative Technologies and
Systems, 2005. Proceedings of the 2005 International Symposi@®0&n

Oh, S. and G. Fox{lHFR: A new architecture for Mobile Web Services:
Principles and Implementation2005.

Pericas-Geertsen, Binary interchange of XML infosetgsn XML Conference &
Exposition 20032003. Pennsylvania Conventin Center, Philadelphia, PA, USA.
Sandoz, P. and K.K. Santiago Pericas-Geertsen, Marc Hadley, andloEdua
Pelegri-Llopart,, Fast Web Service, available from

236

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

http://java.sun.com/developer/technicalArticles/WebServices/fastsg¢s/ visited
12/17/2006

Sandoz, P., A. Triglia, and S. Pericas-GeertBast Infoset, article available
from http://java.sun.com/developer/technicalArticles/xml/fastinfoset/ 2004
[cited.

Govindaraju, M., et aRequirements for and Evaluation of RMI Protocols for
Scientific Computingin Proceedings of the IEEE/ACM SC2000 Conference
(SC’00) 2000. Dallas, TX, 2000

Lim, S., et alGridFTP and Parallel TCP Support in NaradaBrokerinm
Proceedings of 6th International Conference on Algorithms and Architedtures
Parallel Processing ICA3PP 2005
http://www3.it.deakin.edu.au/ica3pp2005/index.php?id=Home Melbourne
Australia. October 2-5 2002005: Springer-Verlag.

Bayardo, R.J., et &n evaluation of binary xml encoding optimizations for fast
stream based xml processing WWW2004, May 17-22, 2004, New York, New
York, USA2004: ACM Press New York, NY, USA.

W3C, Report From the W3C Workshop on Binary Interchange of XML
Information Item Sets, 24th, 25th and 26th September, 2003, Santa Clara,
California, USA. Available fronmttp://www.w3.0rg/2003/08/binary-interchange-
workshop/Report.html

W3C. XML Binary Characterization Working Group, Web Page
http://www.w3.org/XML/Binary/ [cited.

Chiu, K.XBS: A Streaming Binary Serializer for High Performance Computing
in In Proceedings of the High Performance Computing Symposium 2004, April
2004.2004.

Hoschek, W.,A Quantitative Comparison of Binary XML Encodings,
Presentation at GridWorld / Global Grid Forum 15, Boston, Oct 200, available
from http://dsd.lbl.gov/DSDlocal/DSDMeetings/gafl5-binaryXML. [24f05.
NUX.Web Siténttp://dsd.Ibl.gov/nux/ [cited.

Chong, C.Y., S.P. Kumar, and B.A. Hamiltd®ensor networks: evolution,
opportunities, and challenge®roceedings of the IEEE, 20031(8): p. 1247-
1256.

Delin, K.A., The Sensor Web: A Macro-Instrument for Coordinated Sensing.
Sensors, 2002 2002(1): p. 270-285.

Delin, K.A. and S.P. Jacksdhe Sensor Web: A New Instrument Conc2@dl.

p. 20-26.

Martinez, K., J.K. Hart, and R. Orgppvironmental sensor network&004. p. 50-

56.

Estrin, D., et al.Next century challenges: scalable coordination in sensor
networks 1999, ACM Press New York, NY, USA. p. 263-270.

Hudnut, K.W., et alThe Southern California Integrated GPS Network (SCIGN)
2002. p. 167-189.

Yamagiwa, A., Y. Bock, and J. GenricReal-time monitoring of crustal
deformation using large GPS geodetic networks-Japanese GEONET's potential as
a natural hazards mitigation systenm American Geophysical Union, Fall
Meeting 2004, abstract #SF53A-0724004.

237

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.
162.

Cardell-Oliver, R., et alA Reactive Soil Moisture Sensor Network: Design and
Field Evaluation.International Journal of Distributed Sensor Networks, 2005
2005.1(2): p. 149-162.

Raicu, L.Efficient Even Distribution of Power Consumption in Wireless Sensor
Networks in ISCA 18th International Conference on Computers and Their
Applications, CATA 2003, 4 page04. Honolulu, Hawaii, USA.

Berfield, A., P.K. Chrysanthis, and A. Labrinidiaitomated Service Integration
for Crisis Managemenin First Workshop on Databases In Virtual Organizations
(DIVO 2004), available from
http://dais.cs.uiuc.edu/divo2004/proceedings/divo04-berfield26(i4.

Goldammer, J.GEarly warning systems for the prediction of an appropriate
response to wildfires and related environmental hazarddealth Guidelines for
Vegetation Fire Events1998. Lima, Peru, .

Allen, R.M. and H. Kanamorihe Potential for Earthquake Early Warning in
Southern CaliforniaScience 200300(5620): p. 786-789.

Fox, G.C. and D. GannoWyVorkflow in Grid SystemsConcurrency and
Computation: Practice and Experience, 2A@§10): p. 1009-1019.

Oinn, T., et al.Taverna: Lessons in creating a workflow environment for the life
sciencesConcurrency and Computation: Practice and Experience, 200émne
18(10): p. 1067 - 1100.

Bock, Y., et al.Scripps Orbit and Permanent Array Center (SOPAC) and
Southern Californian Permanent GPS Geodetic Array (PGGAY7, National
Academy Press. p. 55-61.

PBO,THE PLATE BOUNDARY OBSERVATORY. Creating a Four-Dimensional
Image of the Deformation of Western North America. A PBO White Paper
available from
http://www.unavco.org/pubs_reports/proposals/PBOwhitepaper.pdf

Hudnut, K.W., et alTHE SOUTHERN CALIFORNIA INTEGRATED GPS
NETWORK (SCIGN)n The 10th FIG International Symposium on Deformation
Measurement2001. Orange, California, USA.

Bock, Y., L. Prawirodirdjo, and T.I. MelbournBetection of arbitrarily large
dynamic ground motions with a dense high-rate GPS netv@EKOPHY SICAL
RESEARCH LETTERS, 20041

Apache, X.M.L.Beans Projecthttp://xmlbeans.apache.ordZ003.

Paulson, L.DBuilding rich web applications with AjaxEEE Computer, 2005.
38(10): p. 14-17.

238

