

������������	
������
�
��
��������

�������
����	�����
��	����
����

������
�	��������������
������� �
�
�

�������������
�
�

��������	�
�
�
�

Submitted to the faculty of the University Graduate School
in partial fulfillment of the requirements

for the degree
Doctor of Philosophy

in the Department of Computer Science
Indiana University

February 2007

I

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the

requirements for the degree of Doctor of Philosophy.

Doctoral Committee

--
Prof. Geoffrey C. Fox (Principal Advisor)

--
Prof. Dennis Gannon

--
Prof. David Leake

--
Prof. Beth Plale

January 15, 2007

II

Table Of Contents
�
��������	��

����
��� ��� �����������������������	�
���� �����	���
������������������������������������� ��� ��������������������������������������

������ �
�����������������
	�����
	���������
�	����� ��� �������
������ ��
��
��	
����	������� 	�	���������
��������� ��� ��������!�
���� ����	
������"���������������������������������� ��� ���������������������������#�
���� $
%	
�&	���
��'����� ����
�	���
��������������� ��� �����������������(�

�
����������
������
��������
����������������������������������� ��� ����	��
���� ���	�����
�)����������������������������������� ��� �����������������������������������

������ *�
+���,
��
�
��
���'�
���������
��� ������
- �.*,� /���
������ $��0 �� ��� �������������������������1�
������ �$� 0�� ��� ��������������������������#�

���� 	�	���
�	���
������
%�	
���	
	%���
����������� ��� ������������(�
���� �����	��
%�2���3	������������������������������ ��� �����������������������������4�

������ � �5��� ��� ������������������������4�
������ �	���

��
'�
�	������������������������������ ��� ����������������������!�
������ �
��
����
��
��,
�
%-��
'
	��
"��"
�����"�	�� �
��-�����.�,���/����������������������������6�

�
����������
�
����������
� ������������������������������������ ��� ���������������	�
���� $��
������'������-����������������������������� ��� �����������������������������
���� �)�
�3����
�
����'������
�������"
������������ ��� ������������������
���� �"��	
-�� ��� �����������������������������������#�
�
��������!�
���
� ������������"��� ���������
������������������ ��� ��������!#�
4��� �
�
��"����
����������������������������������� ��� ����������������������������������4(�
4��� 	�	��
����'�
����%
	������
'�
�	���
��-������� ��� �����������4��

4����� 7�����
�������������������������������������� ��� ������������������������4��
4����� $��
����%
	�������	
�	
���������������������� ��� �������������44�
4����� 7�����
������'�
����������������������������� ��� ��������������������48�
4���4� 3����
� 	�	�9�
�	���������������������������� ��� ���������������4!�
4���1� 	�	�:�
��
%��������������������������������� ��� �������������������������1��
4���8� 7���9�	�"
����
������������������������������ ��� �������������������1��
4���!� 7�����
������������
�	���
��'�7���9�	�"
����
 ��1#�

4��� 7���9�	�"
����
������
�������"
���������������� ��� ��������������������8(�
4����� 3
�	��
%�	������	��	�� 	�	�	����������������� ��� �������������8(�
4����� ����
%�0���9�	�"
���������������������������� ��� ������������������8��
4����� 7���9�	�"
����
�����$��
	���
���������������� ��� ��������!��
4���4� 7���9�	�"
����
�����3	�	��������������������� ��� ������������!4�
4���1� ��
'�
�	
������"����������������������������� ��� ��������������������!1�

III

4�4� ��
�	��
%�7���9�	�"
����
���������������������� ��� ��������������������!8�
4�4��� 0	
	�	:
�+�
�
%������������������������������ ��� ���������������������!!�
4�4��� ����	���3�;�2��
%�0	
	�	:
�+�
�
%�����	
	%��� "���<=�������
�	�����������������!6�
4�4��� 3���	
���
��'���
�	��
%�	
��0�
���
�	��
%�7�� �9�	�"
����
�������������������������#��

4�1� �����-���	�� 	�	��
���,>	���������������������� ��� ��������������������#4�
4�1��� *�����	����0	���
	��*	��
	��
-?�0���3��$���
� ������"
��������������������������������������#4�
4�1��� �	���

��
'�
�	������
��%
	���
�������������� ��� ��������������6��

4�8� �"��	
-�� ��� ����������������������������������68�
�
��������$�
�����%������&�'�����������������
�(��"��%������"��� ���
����������
�����������������������)*�
1��� �
�
��"����
����������������������������������� ��� ����������������������������������6#�
1��� ��
�	��
%�7���9�	�"
����
���������������������� ��� �������������������(��
1��� ��
'�
�	
�������������������������������������� ��� ����������������������������(8�
1�4� ��
'�
�	
�����������"�������������������������� ��� �������������������������(�

1�4��� *�0�� ��� ���������������������������(�
1�4����� ��
�	��
%�79����
'�
�	
����������>�"	��@�*� �
	
�'�
��������������������������������������
1�4����� ��
�	��
%�79����
'�
�	
��������9	����
'���� ��
��%
	���
����������������������������������
1�4����� ��
�	��
%�79����
'�
�	
��������:02@��
��%
	 ���
��1�
1�4���4� ��
'�
�	
���3���	
���
��'���
���,
����
%��� ��# �
1�4���1� 9	����
'����?�:02@�����	
���
�������������� ��� ����������6�
1�4��� 7�0������
%���������������������������������� ��� �����������������������(�
1�4����� ��
�	��
%�79����
'�
�	
����������>�"	��@�*� �
	
�'�
��������������������������������������
1�4����� ��
�	��
%�79����
'�
�	
��������9	����
'���� ��
��%
	���
����������������������������������
1�4����� ��
�	��
%�79����
'�
�	
��������:02@��
��%
	 ���
��1�
1�4���4� ��
'�
�	
���3���	
���
��'���
���,
����
%��� ��! �
1�4��� 7�0������
%���������������������������������� ��� �����������������������6�
1�4����� ��
�	��
%�79����
'�
�	
����������>�"	��@�*� �
	
�'�
������������������������������������6�
1�4����� ��
�	��
%�79����
'�
�	
��������9	����
'���� ��
��%
	���
����������������������������������
1�4����� ��
�	��
%�79����
'�
�	
��������:02@��
��%
	 ���
��
1�4���4� ��
'�
�	
���3���	
���
��'���
���,
����
%��� ��8 �
1�1� �"��	
-�� ��� ���������������������������!�

�
��������+�
����,-�%���
����������
���������������������������� ��� ������������	�*�
8��� �
�
��"����
����������������������������������� ��� ����������������������������������#�
8��� ��	������� 	�	��
���3����
�
������������������� ��� �����������������4��

8����� 9����
��������������������������������������� ��� ������������������������������4��
8����� 9����
����	�	�	������������������������������ ��� ����������������������4��
8����� 9����
�3�	�
��������������������������������� ��� �������������������������41�
8���4� �
'�
�	���
���
������������������������������ ��� ��������������������4#�
8���1� ��
�	��
%�����	%�
%��"���
������������������� ��� �����������4#�
8���8� 9����
�7�����
������������������������������� ��� ��������������������46�

8��� ��	������� 	�	��
����������
�	���
�'�
�����	��� ������
�
%��-�����0����
+�����������������1��
8����� ��	�����������0����
+������������������������ ��� ��������������11�
8����� 3�	�
��'�9����
������������������������������ ��� ������������������������1!�
8����� ������	���
�����	%���	
��9����
�������������� ��� �����������16�

IV

8������� �����
%��A$�����	%������������������������ ��� ������������8(�
8�4� ������	���
��
��%
	���
�2���3	��;�3�"���
%�� �5 ����������
�	��
%� 	�	�������������������81�

8�4��� � �5����
��%
	���
�"��
%�5���	
�������������� ��� ����88�
8�4��� � �5����
��%
	���
�	��	�9����
��������������� ��� �����������86�

8�1� ��	������������	-��'�����������	���
��������
�� �
����%����	��������������������������������������� �!(�
8�1��� 0�	
���	������� 	�	��
	�-���� ����	-��
����%� ���	���!#�
8�1����� ������	���
��������
�3�	
%����
����%����	�� ��! #�
8�1����� � �5����
	�-�������"�����
����%����	������� ���#(�

8�8� �"��	
-�� ��� ���������������������������������#��
�
��������.�
(��"��%�������
������&����/��"���������,-�%�������� ��
���	*��
!��� �
�
��"����
����������������������������������� ��� ���������������������������������#��
!��� �����
%�������	����������� 	�	��
����������
�	� ��
�� ������#4�
!��� ��������������%-������������������������������� ��� ����������������������������#1�
!�4� ��������"�������������������������������������� ��� ����������������������������������#6�

!�4��� �-�������	�����-����������������������������� ��� ��������������������6(�
!�4��� �	>��"��
"���
��'�����
����
+��	���
%����
�+�
��	
��"���
���������������������������6��
!�4��� �	>��"��
"���
��'�����
���	���
%����
�+�
��	
 ��"���
���������������������������������������64�
!�4�4� �"�������:
�+�
������������������������������ ��� �������������������68�
!�1� �"��	
-�� ��� ��������������������������((�

�
��������*�
�������������
�'����������������������������������� ��� ��#	�

#��� ��������"��	
-��������������������������������� ��� ����������������������(��
#��� �
���
���������	
���B"�����
������������������� ��� ������������(��
#��� �
�����
��'�
�9"�"
������	
������������������� ��� ���������������(!�

0�&��������/��������������������������������������� ��� ���������������������#�

V

1�����"�'�������
�

9�%"
�������3"

�
���$� 0�����
��
��	�������������� ��� �����������������������6�

9�%"
��������� �5����"��"��������'�
��������
�����	 �	��� �����������������1�

9�%"
��������� �5����"��"��������'�
�#((��	-���
%�� ����������
�����	�	�������������������������������� ����8�

9�%"
����4������'�
��	����	���
������������
��	
��� ��� ����������������������#�

9�%"
����1����,������
��
��	��"
������������������� ��� ���������������������������������(�

9�%"
����������
��
�
����
�������"
���������������� ��� ������������������������������8�

9�%"
��4�����$�3�������
-�������������������������� ��� ���������������������������46�

9�%"
��4�����79���
��
	����
����������������������� ��� ������������������������������1��

9�%"
��4�����79���	-��
��
	���������"��������	�	�	� ���	
���	
��"���-�����'�����
���������������������� �11�

9�%"
��4�4��7� *�3����
�
����'��"
�79���������
�	�� �
��� ���������1#�

9�%"
��4�1���@�*������	�'�
��3, 3�	
���3�0��������� 3	�	��%�� ���������81�

9�%"
��4�8����
�������"
	����	%
	���'�����79������� ��
�	���
�� �����������!��

9�%"
��4�!����	�
�3����
�
����'�����	���3��	
������ �"
�� ����������#(�

9�%"
��4�#���79���
�	��
����
��
�
��
�������������� ��� ��������������������������#��

9�%"
��4�6���0���3��$�� ���
��
	���
��
�������"
	�� �	%
	��	
�� 	�	�9��������������������������������� �#8�

9�%"
��4��(��$
�%�
	���,���� 	�	�'�
�����9��
��	��� 	�� ����������������������#!�

9�%"
��4�������	�����9��
��	���	���,����
�������
�	
��0	�"
	���	��3����
�
���������������������������� #!�

9�%"
��4������ 	�	�'�����
������,����:���+��������� ��� ����������������������������6��

9�%"
��4�������	������,�����"��"��%�
�
	�����-����� 7�� �������������6��

9�%"
��4��4�����%�
�
	�������
����
�����
	���
����
 	
��� ������������������64�

9�%"
��4��1���5�%����
'�
�	
��� 	�	��
���'�
����%
	 ������
'�
�	���
��-�������������������������������� 6!�

9�%"
��1�������
�	��
%�7���9�	�"
����
�������
'�
�	
�����������"�������������������������������������� �����(4�

9�%"
��1�1�������
�	��
%�7���9�	�"
����
������
��%
 	���������	�:�
	
-�@�*�'
	����
+������������(8�

9�%"
��1�����7���9�	�"
����
�������*�����	%�������� ��� ������������������(!�

9�%"
��1�4��� ��"��
����&���'�
���''�
�
���
����
%� ��� ������������������(#�

9�%"
��1�1������3�
'�%"
	���
�'�
�����'�
����	����� ��� �������������������������(�

9�%"
��1�8�����
	%���
	
�'�
�������	
����	
�	
����� �	���
��'�
���	����	-��	��������������������������� �����

9�%"
��1�!����
	%���
	
�'�
�������	
����	
�	
������ 	���
��'�
��	
%�
��	-��	��������������������������� �����

9�%"
��1�#�����
�	��
%�79����
'�
�	
��������9	����
 '������
��%
	���
?���	���'������������������������� ��4�

9�%"
��1�6�����
�	��
%�79����
'�
�	
��������9	����
 '������
��%
	���
?��	
%��'������������������������� ��1�

VI

9�%"
��1��(�����
�	��
%�79����
'�
�	
��������:02@��
��%
	���
�'�
���	����	-��	��������������������8�

9�%"
��1��������
�	��
%�79����
'�
�	
��������:02@��
��%
	���
�'�
��	
%�
��	-��	�������������������!�

9�%"
��1���������	���
������
%�������'�
���''�
�
�� @�*��
����
%�?���	���'����������������������������� �������#�

9�%"
��1���������	���
������
%�������'�
���''�
�
�� @�*��
����
%�?��	
%��'����������������������������� �������#�

9�%"
��1��4�����
'�
�	
�������	
���
��'�9	����
'��� ��	
��:02@�'
	����
+�?���	���'����������������6�

9�%"
��1��1�����
'�
�	
�������	
���
��'�9	����
'��� ��	
��:02@�'
	����
+�?��	
%��'����������������(�

9�%"
��1��8��������3�
'�%"
	���
�'�
���������
���	� ��� ��������������������(�

9�%"
��1��!�����
�	��
%�79������
%��'�
�@�*��	�	��> ��	
%�?���	���'������������������������������������ ���������

9�%"
��1��#�����
�	��
%�79������
%��'�
�@�*��	�	��> ��	
%�?��	
%��'������������������������������������ ���������

9�%"
��1��6�����
�	��
%�79����
'�
�	
��������9	����
'������
��%
	���
?���	���'������������������������ �4�

9�%"
��1��(�����
�	��
%�79����
'�
�	
��������9	����
'������
��%
	���
?��	
%�
�'����������������������� �1�

9�%"
��1��������
�	��
%�79����
'�
�	
��������:02@��
��%
	���
?���	���'�������������������������������� ��8�

9�%"
��1��������
�	��
%�79����
'�
�	
��������:02@��
��%
	���
?��	
%��'�������������������������������� ���!�

9�%"
��1���������	���
������
%�������'�
���''�
�
�� @�*��
����
%�?���	���'����������������������������� �������#�

9�%"
��1��4������	���
������
%�������'�
���''�
�
�� @�*��
����
%�?��	
%��'����������������������������� �������#�

9�%"
��1��1��������3�
'�%"
	���
�'�
��������
���	�� ��� ����������������������6�

9�%"
��1��8�����
�	��
%�79������
%��'�
�@�*��	�	��> ��	
%�?���	���'������������������������������������ �������(�

9�%"
��1��!�����
�	��
%�79������
%��'�
�@�*��	�	��> ��	
%�?��	
%��'������������������������������������ ���������

9�%"
��1��#�����
�	��
%�79����
'�
�	
��������9	����
'������
��%
	���
?���	���'������������������������ ���

9�%"
��1��6�����
�	��
%�79����
'�
�	
��������9	����
'������
��%
	���
?��	
%��'������������������������ ���

9�%"
��1��(�����
�	��
%�79����
'�
�	
��������:02@��
��%
	���
?���	���'�������������������������������� ��4�

9�%"
��1��������
�	��
%�79����
'�
�	
��������:02@��
��%
	���
?��	
%��'�������������������������������� ���1�

9�%"
��1���������	���
������
%�������'�
���''�
�
�� @�*��
����
%�?���	���'����������������������������� �������8�

9�%"
��1���������	���
������
%�������'�
���''�
�
�� @�*��
����
%�?��	
%��'����������������������������� �������8�

9�%"
��8������������9����
���
��������������������� ��� �������������������������������4��

9�%"
��8�����@�*������	�'�
�����9����
����	�	�	���� ��� �������������������41�

9�%"
��8������	
	��������
	���
��'�����'����
������ ��� ���������������������������48�

9�%"
��8�4�����
�	�����
	���
��'�����'����
�������� ��� �����������������������������48�

9�%"
��8�1���@�*������	�'�
�����9����
�3�	�
������� ��� �����������������������4!�

9�%"
��8�8���$��
	�����
��
�
����
�������"
�������� ��� ������������������������1��

9�%"
��8�!����	���:�"
�	
-�$���
�	��
-�.�:$/������� 	���
���
�0�
������
��	C��������������������������� 14�

9�%"
��8�#���3	��'�

�	���	�����������0����
+�.3��0 /�� ����������������14�

VII

9�%"
��8�6�����	�������9����
��'�
��
������
%�
�	�� �����������
�	������������������������������������� ����������16�

9�%"
��8��(����A$�����	%���	
���������������������� ��� �����������������������������8(�

9�%"
��8������9����
���
������	
��� �5����
��%
	���
�� ����������������8!�

9�%"
��8������0	
	�	:
�+�
�
%���������	
����	

	
%� ���
�	����
	
����	���
��
�������������������������� ���86�

9�%"
��8�������
�������"
	����	%
	��'�
���	�������� �������	%���	
���D�@��
��%
	���
���������������!4�

9�%"
��8��4�����	�����������
����
+���
���"���

�3	 ��'�

�	������	-����
����%����	��������������!1�

9�%"
��8��1���0����
+���������
��	%��'�
��D�@�	
��� ��%����	��� ��������������������������������������� ��!8�

9�%"
��8��8�����	������� 	�	� ����	-��
����%����	�� ��� ���������������!!�

9�%"
��8��!���������	���
��������
�3�	
%���	
������ �	-����
����%����	��������������������������������� ���!6�

9�%"
��8��#���� �5����
	�-�������"���� ����	-����
� ���%����	�� ����#(�

9�%"
��!�������
��
�
�����
'�
�	
�����������"���
�� "������
���
�	�������'����
��	
��	��
�+�
����#!�

9�%"
��!������-�������	�����-���������"����'�
��4�� �"
����
	���
��'������	�������������"������������6(�

9�%"
��!������"�����"������
�������
�������"
������ ��� ������������������������6��

9�%"
��!�4����"��������"������
������
��"����'�
��� ��'�
����4���"
������������������������������������ ����������������6��

9�%"
��!�1����"��������"������
������'�
���������
� ��4���"
�������(((�	�������"������
��������������6� �

9�%"
��!�8����"����3���
��������
�������"
��������� ��� ��������������������������64�

9�%"
��!�!����"��������"���
���
����������"�������� ��� ������������������������61�

9�%"
��!�#����"�������:
�+�
����������������������� ��� �������������������������������6!�

9�%"
��!�6������	���
	
����������'�
�����'�
����
�+ �
C��6#�

9�%"
��!��(������	���
	
�'�
�������'�
���������
���
�+�
C��� �����������������66

1

Chapter 1

Introduction

Geography is the science of studying earth and its features and of the distribution of

life on the earth, including human life and the effects of human activity [1]. Although

geography is often associated merely with studying places and maps these are not the

only areas its scope encompasses. Geography studies physical and human landscapes, the

reasons for their spatial variation, why and how they change over time and the dynamics

behind these changes. From creating simple maps to statistical analysis of population

distribution to effects of pollution on rain forests geographic data and tools are being

widely utilized by academia, industry and the governments for understanding almost

every aspect of the modern life.

A Geographic Information System is a system for creating, storing, sharing,

analyzing, manipulating and displaying spatial data and associated attributes. It can be

used for creating or capturing geographic information from various sources in digital

form or for viewing available geographically referenced data in human recognizable

2

formats. Perhaps the simplest example of Geographic Information Systems is widely

available map viewers which process layers of geospatial data to create map images.

Geographic Information Systems are used in a wide variety of tasks such as urban

planning, resource management, environmental impact assessment, emergency response

planning in case of disasters, crisis management and rapid response etc. Although these

seem to be relatively independent and different areas a common feature of almost all GIS

use cases is the need for the system to relate information from different sources. For

instance a GIS framework to help planning adequate response in case of a natural disaster

such as a powerful earthquake would require latest information about the strength of the

earthquake, detailed images of the affected areas with and inhabited places clearly

marked, the names of these places, population density, usable roads and railroads,

information about the energy and natural gas lines, hospitals, police headquarters,

buildings that can be used for relocating affected people such as schools and public

buildings etc. The list can go indefinitely but it gives an idea about unique characteristics

of the GIS.

The 20th century saw the birth of the GI Systems, and their journey from centralized

mainframe systems to desktop systems and finally to distributed systems [2]. Today a

modern GIS requires distributed systems support at two levels; first for accessing various

geospatial databases to execute spatial queries and second for utilizing remote geographic

analysis, simulation or visualization tools to process spatial data.

In a relatively short period of time the Internet has dramatically changed how

scientists, industry specialists and the public access, exchange and process information.

As in most other cases the geospatial data access and dissemination methods also

3

significantly evolved. This helped academia, governments and businesses to have easy

access to substantial amount of geospatial data. Today hundreds of spatially enabled web

sites allow users to make spatial queries, create/view/manipulate interactive high-quality

online maps or search and find national or global geographic data. The governments are

working to establish national spatial data and services infrastructures to satisfy ever-

increasing demand from public for more and higher quality geospatial data. For instance

the Federal Geographic Data Committee under the National Geospatial Programs Office

is established to promote the coordinated development, use, sharing, and dissemination of

geospatial data on a national basis. It maintains the National Spatial Data Infrastructure

(NSDI) Clearinghouse Network which is “a community of distributed data providers who

publish collections of metadata that describe their map and data resources within their

areas of responsibility, documenting data quality, characteristics, and accessibility.” [3].

Similar clearinghouses or data warehouses have been created by others as well [4].

Although the advances in internet and distributed computing provided easy access

to distributed data products several issues still need to be resolved. These issues also

constitute the motivations of our research and explained in the next section.

1.1 Motivation

1.1.1 Problems with the Traditional GIS Approaches

The desktop GIS applications conventionally used to access and analyze local data

do not have the ability to interact with online data sources and with other spatial analysis

applications. To be able to interact with online geospatial resources the traditional

Desktop GIS programs are evolving into distributed applications, compatible with

4

various distributed systems architectures. As a result client-server based distributed GIS

applications have been introduced to fill the gap, and the GIS companies and research

groups have developed their own spatial databases along with various data access and

manipulation tools.

However because of the proprietary design of these applications interoperability at

the application level has always been a significant bottleneck. For instance in addition to

the various types of GIS analysis applications there are at least three major types of GIS

servers used by different Indiana State counties, and these servers are not compatible with

each other [5]:

– ESRI [6] ArcIMS and ArcMap Server (Marion, Vanderburgh, Hancock,

Kosciusko, Huntington and Tippecanoe counties)

– Autodesk MapGuide [7] (Hamilton, Hendricks, Monroe and Wayne counties)

– WTH Mapserver Web Mapping Application [8] (Fulton, Cass, Daviess and City

of Huntingburg counties) based on several Open Source projects.

We also observe the same interoperability problem at the data level. This is perhaps

due to the aggressive policies GIS companies have embarked in early years of the GIS

development to discourage switching between different suites. There are numerous ways

of describing geospatial data in various formats such as ESRI shape files [9], ASCII files,

XML files, Geography Markup Language (GML) [10] files etc. Following table gives a

comparison of some of the GIS software file formats:

Table 1-1 – Software File-Format Chart (Source: Geo Community, [11])

 tiff .tfw header.dxfdem .eoo .shp.jpgigds/.dgn.mif.dlg .sdtsdted Tiger
AutoCad
V.13 2 2 1 3 1 1 1 1 1
V.14 1 2 1 3 1 1 1 1 1
Cad Overlay GSX 1 1 1

5

Caliper Corp.
GIS Plus 1 2 1 1
Maptitude 1 2 1 1 1 1 1 1 1
Trancad 1 2 1 1
ENVI 1 1 3
ERDAS 1 1 1 1
ERMAPPER 1 1 1 1 1 1 1 1 1
ESRI
ARC/INFO 1 1 1 1 1 1 1 1 1 1 1 1
ArcView 1 1 1 2 1 1 1 2
Data Automation Kit 1 1 1 1 1
Geographix 1 1 1
Genasys 1 1 1 1
GRASS 1 1 1 1 1
HASP 3 3 1 3
IDRISI 1 1 1 3
Intergraph
IRAS C 1 3 3 3
PowerRas 1 3 3 3
Vista Map 1 3 3 3
Landform Gold 1 1 3
Microstation 3
95 1 2 1
Descartes 2 2 3 3
MapInfo 1 3 1 1 1 1 1
PCI Remote 1 1 1 1
Terramodel 1 1 1 1
TNT Mips 1 1 1 1
TOPO+ 1 1 3 3
Vertical Mapper 2 3 2 2

1= Full compatibility
2= Compatible only with third party software

3= Not compatible at all

Therefore, the unique properties of the geospatial data such as different resolutions

and scales of the same domain caused data providers to create different ways to describe

the same geospatial entity which in turn resulted in numerous incompatible formats.

We identify several problems with traditional distributed GIS approach:

1 Problems with assembling data: Because of the distributed nature of geospatial

data, users are required to utilize different tools to access data in various FTP or

HTTP servers, relational or XML databases etc. In addition to the archived data

6

real-time data providers employ different communication and data transport

protocols which further complicates the access.

2 Data format problems: Depending on the user’s choice of software, applications

that digest geospatial data require input in different formats. Users spend

significant amount of time converting data from one format to other to make it

available for their purpose.

3 Amount of resources for processing data: After the data is collected and

converted into a usable format, enough hardware and software resources need to

be allocated for analyzing the data. In most cases the amount of collected data

reaches to an amount in the order of gigabytes or even terabytes, handling this

data becomes a challenge for most users and organizations. Also, simulation and

visualization software used in conjunction require high performance computing

platforms which are unreachable for common users.

As a result, today, due to the distributed nature of the geospatial data and the variety

of data and application standards the GIS community faces the following challenges:

1. Adoption of universal standards: Over the years organizations have produced

geospatial data in proprietary formats and developed services by adhering to

differing methodologies;

2. Distributed nature of geospatial data: Because the data sources are owned and

operated by individual groups or organizations, geospatial data is in vastly

distributed repositories,

3. Service interoperability: Computational resources used to analyze geospatial

data are also distributed and require the ability to be integrated when necessary.

7

Undoubtedly these issues are the focal point of numerous research and development

efforts [12] [13]. Especially the problems related to data formats and standards are being

addressed by a number of groups and organizations some of which also offer solutions to

the application level interoperability issues [14-18]. We summarize these standards based

efforts in Chapter 4.

However most of the distributed GIS services approaches are based on more

traditional client-server models and lacks the potential of easily linking distributed

computational components.

1.1.2 Sensors and Real-Time Data Access in GIS

Another very important and relatively less explored issue in geospatial world is the

real-time data access and their integration with Geographic Information Systems. Thanks

to the advancements in sensor technology a revolution is slowly taking shape in terms of

data acquisition in a growing number of fields [19, 20]. Profound effects of sensors in

GIS related sciences such as in environmental monitoring, earth observation, real-time

pollution monitoring are becoming more and more visible [21-24].

GIS related use of sensors vary to a great extent; they can be used in monitoring the

water level of the rivers, or the number of vehicles passing through bridges at certain

times of the day, or recording humidity in the air etc [25] [26]. But what is common is

that all of these measurements are used by some GIS framework for statistical or practical

purposes. However since the traditional approach of the GIS frameworks is based on

accessing and using geographic data from archives or spatial databases integrating these

sensor measurements with the geo-processing tools is a problematic issue, especially in

real-time [27].

8

There are some recent efforts to present unified interfaces to sensors and sensor

measurements such as OGC Sensor Web Enablement [28]. We summarize these efforts

in Chapter 6. However the GIS community today needs Service Oriented approaches for

coupling real-time sensor measurements with the data analysis tools.

1.2 Research Issues

In this dissertation we investigate the issues pertaining to the traditional Geographic

Information Systems approaches and propose solutions to these problems based on

modern Service Oriented Grids approaches.

The importance of providing access to computational resources has been central in

many research efforts in Grid community. Another such important issue is distributed

access to data stored in various types of databases. Geographic Information Systems are

especially affected by the developments in both of these areas since these systems are

traditionally data-centric; they require access to data from many different sources for

creating layers, and tend to use various types of data processing tools for analysis or

visualization of the geographic data.

Distributed data access in GIS is traditionally regarded as dealing with distributed

data archives, databases or files. However modern scientific applications especially real-

time data processing tools require continuous data streaming. High-rate data streaming is

also important for applications such as decision making tools that require fast data access.

We identify two major types of geographic data based on their sources: real-time

measurements acquired from sensors and archival data stored in spatial databases. The

connection between sensors and Geographic Information Systems is particularly strong

9

because the measurements are most likely to be used by these systems for analysis or

statistical reasons.

This thesis is about developing a Web Services architecture that provides access to

both types of the geographic data products, manage data sources, connect them to the

geo-processing applications and allow users to access them in common formats. The

thesis implementation encompasses development of GIS data services, high-performance

streaming data services, integrating messaging system with these services, composition of

GIS services in scientific workflows, real-time data filters and coupling scientific

geophysical applications with real-time and archival data.

We identify following research questions in the scope of this thesis:

- Can we implement unified data-centric Grid architecture to provide common

interfaces for accessing real-time and archival geospatial data sources?

- How can we incorporate widely accepted geospatial industry standards with

Web Services?

- Are the performance of the Web Services acceptable for Geographic

Information Systems and how can we make performance improvements?

- How can we build services for supporting scientific GIS applications that

demand high-performance and high-rate data transfers?

- How can we build a Grid architecture to couple real-time sources with

scientific applications that also provides high interactivity and performance?

- What is the way for managing real-time data filters using Web Services?

10

- Can we organize and manage real-time sensor data products using publish-

subscribe systems? Are the mechanisms of topic based publish/subscribe

systems appropriate?

- Is the performance of the Real-Time Data Grid acceptable for uninterrupted,

continuous operation?

- Will the Real-Time Data Grid implementation scale for large number of data

providers such as sensors and clients?

1.3 Organization of the Dissertation

This thesis is organized as follows. The first chapter consists of an overview of the

Geographic Information Systems, a summary of the outstanding issues that relate to the

research outlined in this thesis and the research questions. Chapter 2 contains short

reviews of some of the related projects and motivating geophysical applications. Our

system is an example of the Grids of Grids paradigm [29] which consists of two major

architectural components; the first is a Data Grid for archival geographic data, and the

second is the Real-Time Data Grid for sensors. In Chapter 3 we give an overview of the

overall architecture and explain the major components of the system.

Chapter 4 and Chapter 5 present the High Performance GIS Data Grid architecture

for archival geospatial data, and a detailed performance study. In chapter 4 we explain the

design principles of the Data Grid architecture for GIS and give implementation details.

In this chapter we present our approach for creating GIS Web Services and methods for

improving the performance of these services. We introduce streaming GIS Web Services

for high performance and high rate data transfer. In Chapter 5 we present a detailed

11

performance study of the GIS Data Grid and the streaming services introduced in Chapter

4.

Chapters 6 and 7 introduce the Real-Time GIS Data Grid and its performance

studies. In Chapter 6 we present a novel Grid architecture which consists of filter Web

Services, Grid Messaging Substrate and Information Services. This architecture is

designed to provide continuous streaming access to sensor messages. We also present

metadata descriptions for real-time filters and filter chains. This chapter presents several

use cases of the Real-Time Data Grid architecture with real-time GPS streams. Chapter 7

presents a detailed performance study of the Real-Time Data Grid architecture. We

outline several test cases and give performance results. The tests help us determine the

limits of the system in terms of the maximum number of data producers and clients that

can be supported.

In Chapter 8 we give answers to the research questions identified in Chapter 1,

outline future research directions and conclude the dissertation.

12

Chapter 2

Related Work and Motivating Use Cases

While writing about Geographic Information systems one must acknowledge the

tremendous amount of work done for more than half a century. Since the first true

operational GIS framework “Canadian Geographic Information System” (CGIS) was put

in service in 1964, there have been many successful systems developed and used. Later

the first mainframe GIS examples are replaced by the more modular Desktop based

systems working on UNIX workstations and Personal Computers (PC). With the

development of sophisticated networking methodologies, access to distributed geographic

data and geo-processing applications become much easier. Today widely known online

mapping applications such as Google Maps, Microsoft Visual Earth, and Yahoo Maps

provide GIS services to ordinary Internet users.

This research is mainly constructed around the Geophysical Grid notion and it aims

to provide tools for coupling scientific geophysical applications such as RDAHMM,

13

Pattern Informatics etc with real-time and archived geographic data. The research is

divided into two major parts; the first part is about issues related to creating a Service

Oriented Architecture for geographic data, proposed improvements and benchmarks, and

the second part is defining principles and developing a prototype implementation for

supporting sensors and real-time data in Grid environments. This logical separation of

geo-referenced data helps us clearly define the boundaries of the research and the

requirements for the two distinct Grids we build.

In this chapter we summarize several well-known projects in the community, which

are also closely related to our work. However it should be noted that it is not possible to

mention all related projects here because of the sheer number of work done or currently

being researched. Also it should be noted that the term GIS relates to many different

scientific fields, but we are only interested in Information Technology aspects of it.

Additionally we summarize some of the scientific applications which motivated this

research.

2.1 Related Projects

2.1.1 Linked Environments for Atmospheric Discovery

(LEAD)

Linked Environments for Atmospheric Discovery (LEAD) is a large scale project

funded by NSF Large Information Technology Research grant for addressing

fundamental IT and meteorology research challenges to create an integrated framework

for analyzing and predicting the atmosphere. The proposed framework helps researchers

14

to identify and access, prepare, manage, analyze or visualize a broad array of

meteorological data and model output independent of format and physical location [30].

For adaptive utilization of distributed resources, sensors and workflows LEAD is

developing the middleware. The LEAD system is constructed as a service-oriented

architecture and decomposes into services which communicate via well-defined

interfaces and protocols [31].

LEAD provides the scientists with necessary tools to build forecast models using

available observations or model generated data and manages necessary resources for

executing the model. The tools include supercomputer resources, automated search,

selection and transfer of required data products between computing resources [32]. One

major feature of LEAD is support for adaptive analysis and prediction of mesoscale

meteorological events. To provide such features LEAD data subsystem supports three

important capabilities: 1 - automated data discovery by replacing the manual data

management tasks with automated ones, 2 - a highly scalable data archiving system

which allows transfer of large scale data products between resources, metadata

descriptions of the available information and protected storage facilities, 3 – easy search

and access interfaces for the data via a search GUI and underlying ontology [32].

LEAD provides a web-portal as the entry point for students, users or advanced

researchers to the meteorological data, services, models, and workflow, analysis and

visualization tools related to the project. Users can interactively explore the weather as it

evolves, create custom scenarios or acquire and process their own data [33].

An important issue researched by LEAD scientists is adaptive workflow, termed as

Workflow Orchestration for On-Demand, Real-Time, Dynamically-adaptive Systems

15

(WOORDS). This approach allows use of tools such as analysis or visualization

applications, models or data repositories as dynamically adaptive, on-demand Grid

enabled systems instead of static data consumers with fixed configurations. The dynamic

nature of the system allows a workflow configuration to be changed in response to

weather, respond to user decisions, initiate other processes and interact with remote

observing technologies to optimize data collection for current problem [34]. The

workflow tools provided by LEAD automates many of the otherwise time consuming and

complicated tasks by linking data management, assimilation, forecasting, and verification

applications into a single experiment [LEAD Portal].

2.1.2 OPeNDAP

Open-source Project for a Network Data Access Protocol (OPeNDAP) is a

framework that aims to simplify all aspects of scientific networking. OPeNDAP or

formerly known as DODS (Distributed Oceanographic Data System) allows access to

scientific data over the internet from applications that were not specifically designed for

that purpose. There are also some applications designed to communicate with OPeNDAP

servers. To access data OPeNDAP provides a URL, however to retrieve the data using

the provided URL users need to know the type of the data and how to request it. By

default OPeNDAP data is stored and transmitted in binary format. To provide some

information about the data OPeNDAP provides Dataset Descriptor Structure (DDS).

DDS is OPeNDAP’s version of metadata in a C-like syntax. Users can access the DDS of

a particular data set by appending .dds to the URL [35]

16

Distributed Oceanographic Data System or DODS was originally initiated in early

1990’s as a system that would facilitate scientific data exchange between researches,

archives, industry specialists etc [36]. Two fundamental design criteria was 1) servers

must be easy to install. And 2) the system must be compatible with the existing software.

Built to satisfy these criteria today OPeNDAP is one of the major tools used especially by

ocean scientists to share data across globe. The key futures of OPeNDAP is that it allows

access to data from a wide variety of programs including existing applications, and it

provides network versions of Application Program Interface (API) libraries for most

commonly used data formats such as NetCDF, HDF, JGOFS and several others. Thus it

allows users to continue to use their applications with OPeNDAP support.

The OPeNDAP architecture uses the World Wide Web model, or the client/server

model, where the browsers submit requests to the servers and the servers respond with

the data that make up the web pages. In addition to the requesting data from the servers

OPeNDAP allows clients to browse data, request data to be translated and delivered in

some particular format, request specific part of the data etc. Also OPeNDAP allows

researchers to convert their data analysis programs such as Matlab, Ferret, IDL into

specialized web browsers.

How an OPeNDAP server and client communicate with each other is defined by

OPeNDAP protocol which consists of four components: 1- A data model used to

transport data from one source to another, 2- A Data Descriptor Structure (DDS) which

describes the data structures to be filled by the accompanying data, 3- A procedure for

17

retrieving data and the DDS from the remote source, 4- An API to implement this

protocol [36].

The advantages of using OPeNDAP to share data over the web is explained as

follows [37]:

1. OPeNDAP server and client cooperate to deliver the data in the particular

format in which the analysis application expects, so the user need not learn

about various archival formats.

2. OPeNDAP allows users to sample the datasets in the formats supported by

his/her analysis package, thus unnecessary data exchange over the Internet is

prevented.

3. Most of the search and sampling is performed on the server machines which

reduce the Internet traffic and decrease the load on the local machine.

The interaction between an OPeNDAP client and a server can be summarized in

four steps: User sends a request to the OPeNDAP server via URLS, the URL is passed to

the HTTP server via an OPeNDAP client, the data are returned via HTTP and the

OPeNDAP client reformats the received data for user’s analysis package. There are three

basic data object types provided by OPeNDAP:

1. Data Descriptor Structure (DDS), which describes the structure of the data

set and provides syntactic metadata,

2. Data Attribute Structure (DAS) semantic metadata which gives the attributes

values of the fields described in the DDS,

18

3. The data (DODS data), the actual data in a binary structure.

Major advantages of OPeNDAP over conventional file transfer protocols such as

FTP are its ability to sample data, or request only subsets of data, and the ability to

aggregate data from several remote resources in one transfer operation.

2.1.3 ROADNet

The Real-time Observatories, Applications, and Data management Network

(ROADNet) (http://roadnet.ucsd.edu), is a large scale project involving several different

types of scientific research areas and communities. ROADNet research focuses on

resolving challenges related to building wireless sensor networks for various types of

observations and the information management system which will deliver this sensor

observation in real-time to the users.

The goal of creating sensor networks to measure various entities is to enhance our

capacity to monitor and respond to changes in our environment. ROADNet collects

seismic, oceanographic, hydrological, ecological and physical data and streams to a

variety of end users in real-time [38].

ROADNet utilizes Object Ring Buffers (ORB) to capture real-time data from sensor

networks [39]. ORBs capture data from the sensors and store them for immediate use as

well as archive them for further analysis. ORB allows users to access data through a well-

defined API and provides metadata about the raw sensor observations.

To enhance the capabilities of the ORB for real-time data exchange and dynamic

reconfiguration ROADNet team has developed Virtual Object Ring Buffers or Virtual

ORBs (VORB) [40]. VORB provides transparency and independence from the physical

19

ORB implementation which can be useful in federated sensor networks to act as data

exchange points or in developing test beds for virtual sensor networks [39].

Figure 2-1 Current ROADNet Sensor map (image taken from http://roadnet.ucsd.edu/index.html)
shows several different types of sensors being utilized.

ROADNet research spans following scientific areas (source:

http://roadnet.ucsd.edu/field_research.html):

Ecology: By employing a multiplicity of sensors to monitor environmental

conditions such as physical, chemical and biological variables.

Geodesy: GPS stations are used for high-resolution, high-rate, precise position

measurements. The GPS streams are made available through internet which can be used

by surveyors to obtain real-time three-dimensional position fixes with high-level vertical

and horizontal precision.

20

Hydrology: Sensors are used to monitor mountainous watersheds, precipitation,

runoff, and weather and water quality. ROADNet is proposing to build a remote sensor

network to continuously monitor hydrological and meteorological conditions of the water

resources.

Oceanography: Implementing continuous real-time data delivery helps

observational oceanography at several levels, such as understanding and modeling the

ocean and underlying crust and mantle using real-time and past data; taking necessary

steps in any emergency situations, or in educational, recreational or business purposes.

Seismology: ROADNet provides Virtual Seismic Network (VSN) for integrating

real-time data from multiple disparate seismic networks. Currently 550 globally

distributed stations are accessible through internet.

2.2 Data Stream Processing and Management

One of the major parts of our research is about processing real-time sensor streams

on-the fly. To achieve this goal we have developed real-time distributed data processing

filters extended from a generic filter class and deployed them around publish-subscribe

system. In 6.2 we describe our approach to create filter chains for more complex

processing and real-time data analysis. We use distributed filter services and filter chains

to process the data streams on-the-fly. In this section we summarize some of the related

work about issues pertaining to stream processing and management.

The Active Streams is a middleware approach and its associated framework for

building distributed applications and services [41]. In the Active Streams context the

distributed systems have three components: applications, services and data streams. The

21

data streams are sequences of self-describing data units flowing between components and

services. The data streams are made active by attaching functional units called streamlets.

Streamlets are self-contained units that operate on incoming streams and generate records

placed onto outgoing streams. Streamlets are created using E-code which is a subset of

general procedural language, and they can be obtained from streamlet repositories. A

coarse form of dynamic adaptation is obtained by attachment/detachment of streamlets

that work on data streams. Finer grain adaptation involves fine-tuning a streamlet’s

behavior via parameters, and by re-deploying streamlets to best leverage dynamically-

changing available resources over the data path [42]. Active Streams framework relies on

Echo [43] a high-performance event-delivery middleware designed to scale to the data

rates typically found in grid environments.

Echo which is developed at Georgia Tech aims to address requirements of high-

performance event-based communication in distributed systems. Echo provides

maximum bandwidth to the applications by allowing receivers to customize delivery

through derived event channels, which are mechanism that can operate at network

transmission speeds [43]. Related to our research is Echo’s filtering and transformation

ability. To support specific customizations on the event streams Echo provides derived

event channels which bears some similarities to content-based and pattern-based filtering.

Additionally Echo supports dynamic code generation (DGC) which allows general

computations on the streams. By using a derivation function applications can create a

new channel which is derived from an existing channel. This allows custom filter

execution on the stream and eliminates unwanted event traffic [43].

22

Adapting Computational Data Streams (ACDS) system which is built on top of

Echo is a system for implementing adaptive computational data streams [44]. ACDS aims

to address the high-performance requirements for creation and management of the large-

scale data streams put forward by the distributed scientific applications. The streams are

sequence of data events, generated either in response to requests from consumers or by

the producers. ACDS supports migration, specialization, splitting and merging of these

stream computations. Some of the capabilities provided by ACDS are stream

parallelization, runtime filtering adaptation, and runtime migration of the stream

components. ACDS provides capabilities for parallelization of the stream computations

since in some cases the stream computations themselves are computationally intensive.

This motivates ‘split’ and ‘merge’ adaptations in ACDS. Runtime adaptation of the

parameters for single or sets of stream components allow data filtering at runtime.

Runtime migration of the stream components allows ACDS to deal with dynamic

variations in the node and network loads [44].

Managing and processing data streams in distributed systems are central in several

research efforts. One such example is dQUOB: dynamic Query Object system [45, 46].

dQUOB provides mechanisms to reduce end-to-end latency of the scientific data by

forwarding only the useful data. This requires ability to continuously run queries on the

data stream to strip the unnecessary parts for a specific purpose. dQUOB enables users to

create SQL-like queries and attach them into runtime components called quoblets. These

components may then be dynamically embedded into the streams at various points which

also provide distributed filtering capabilities [45]. By adopting dQUOB scientists may

potentially eliminate large amount of data processing and transfers. In [47] authors

23

explain that although the queries over data streams is a useful abstraction, they had

discovered that the transformation power of the rules can be enhanced by coupling a

query and a complex, user-defined function which is triggered when the query is

evaluated to true. This approach can be thought of a custom filter, based on a rule which

is created by the user.

dQUOB uses dQUOBEC, a publish-subscribe system implemented as event

channels [46]. dQUOBEC is a lightweight and efficient system for transferring binary

data as streams. It is a subject based publish-subscribe system and follows a push-based

streaming model, and also supports peer-to-peer architecture. dQUOBEC uses Portable

Binary Input Output (PBIO) [48] for binary data transfer. dQUOBEC is also used by

Calder, a stream processing engine, which aims to provide timely access to data streams

[49]. Architecture and experimental evaluation of Calder is discussed in [49, 50].

Data streams such as those obtained from the sensors and their management are

discussed in various publications. Golab and Ozsu in [51] discuss the issues in data

stream management and challenges related to executing queries on streaming data.

Telegraphcq [52, 53], Eddies [54] and Calder [50] are a few examples of Stream

Processing Engines (SPE’s) designed to process data flows. In [55] Babcock et al explain

the differences between the traditional Database Management Systems (DBMS) and the

continuous data streams. They also give a list of the data stream management projects

and propose STREAM (STanford stREam datA Manager) a data stream management

system (DSMS). In [56] and [57] Plale explains how distributed global snapshots can be

used to access streams and proposes a framework based on this idea to bring the data

streams to the Grid.

24

2.3 Motivating Use Cases

2.3.1 RDAHMM

Regularized Deterministic Annealing Hidden Markov Model (RDAHMM) is an

implementation of regularized deterministic annealing expectation-maximization

algorithm (RDAEM) [58] for fitting hidden Markov Models (HMMs) [59] to time-series

data. Fitting an HMM to a time-series allows us to describe the statistics of the data in a

simple way that ascribes discrete modes of behavior to the system.

What is different in RDAEM than standard HMM time series fitting methods such

as those used in speech analysis, is that it does not require a priori knowledge about the

data. This property of RDAEM allows its use in data collected from poorly understood

systems and quick adoption to new problem domains.

25

Figure 2-2 – RDAHMM output plots for time series data collected for two years between 1998 and
2000 from GPS station CLAR which is located in the city of Claremont, California. The graphics

display the displacement time series segmentation for north, east and up coordinates. This figure is
taken from [60].

RDAHMM has successfully been applied to geodetic time series in Southern

California such as daily displacement time series collected by the Southern California

Integrated Geodetic Network (SCIGN). To analyze the GPS time series data the HMMs

are first trained using a data set deterministic of the actual time series. The algorithms

segment the series based on statistical changes as identified by the trained HMMs. The

identified segments correspond to state changes or different behavioral modes in the

series. The correlations in the state changes across multiple stations at a given point of

time indicate region-wide activity. The application of this algorithm has shown that it can

26

detect seismic events across a region as well as signals associated with aseismic events or

long-range interactions between smaller events [61].

Figure 2-2 is an example plot of RDAHMM output given in [60]. The figure shows

that the states before and after the Hector Mine quake of October 1999 are clearly

separated, and distinct in turn from a period in 1998 in which well ground water drainage

caused displacement in the vertical direction is also identified.

Another HMM plot example is given in Figure 2-3 for the same time period.

Results show that the algorithm identified the dip due to the aquifer drainage between

days 120-250 and the Hector Mine earthquake at day 626.

Figure 2-3 – RDAHMM output plots for 800-day long GPS time series data. Figure courtesy of
Robert Granat, JPL

From the point of view of our research RDAHMM is a geophysical application

which requires geographic data as input to produce a set of output. The input data is

usually archived GPS observations made available through files on FTP or HTTP servers.

27

We aim to provide a fully automatic integration of RDAHMM with the data sources with

ability to select single or multiple station analysis.

Another interesting research challenge we address in this research is that although

RDAHMM has traditionally been used to analyze archival GPS observations we can also

use it to analyze near-real time observations. Our architecture provides easy access to

real-time GPS observations of Southern California Integrated GPS Network (SCIGN) and

we have integrated RDAHMM with our data services to analyze the real-time data.

Details of this integration are explained in Chapter 6.

2.3.2 Pattern Informatics

As reported in [62] there have been two major types of approaches for forecasting

earthquakes. The first approach is based on empirical observation of precursory changes

such as seismic activity, ground motions and others. The second approach is statistical

patterns of Seismicity. The hypothesis behind these approaches is that the earthquakes

will occur in regions where typically large earthquakes have occurred in the past. The

Pattern Informatics (PI) [63-66] approach suggests that a more promising approach to this

hypothesis is that the rate of the occurrence of small earthquakes in a particular region

can be analyzed to assess the probability of much larger earthquakes [62].

The PI method uses observational data to identify the existence of correlated

regions of seismicity. The method does not predict earthquakes rather forecasts the

regions or so-called hotspots where earthquakes are most likely to occur in the relatively

near future [62].

28

Figure 2-4 – PI forecast map or hotspot scorecard shows the results of a forecast experiment for
California. The time period of this experiment is January 1 2000 – December 31 2009. The green

triangles represent the earthquakes occurred between 1990 and 1999, while the blue circles are the
large seismic events occurred after 2000. The scorecard indicates that 16 of these 19 significant

earthquakes occurred after the work was first published in February 19, 2002. The figure is taken
from QuakeSim Website (http://quakesim.jpl.nasa.gov/scorecard.html)

The PI technique quantifies the temporal variations in seismicity patterns to identify

geographic regions with strongly correlated seismic activities. These regions are shown to

be the locations for subsequent large earthquakes. The result is a map which shows the

fluctuations in seismic activity which are found to be related to the preparation steps for

large earthquakes. In other words the PI map shows regions with hotspots where

earthquakes are likely to occur during a specified period in the future [62]. An example

PI map is shown in Figure 2-4.

29

The PI method has been applied to existing seismic observations to forecast future

seismic hotspots in various regions such as Southern California, Turkey and Japan [67].

The fact that the PI uses publicly available seismic records to forecast future earthquakes

makes it an ideal candidate for our research because our system provides access to both

real-time and non-real time geophysical records. We have harvested global and Southern

California specific seismic records off the internet and created services to access these

data. By using these services we were able to integrate PI with our architecture. This

integration is reported in Chapter 4. Sayar et al [68] reports the results of integration of

PI, our GIS data services and GIS visualization Web Services [69].

2.3.3 Interdependent Energy Infrastructure Simulation system

(IEISS)

The National Infrastructure Simulation and Analysis Center (NISAC) at Los

Alamos National Laboratory (LANL) develops advanced modeling and simulation tools

for analysis of the critical infrastructure. These tools allow authorities to understand

interdependencies, vulnerabilities, and complexities of the infrastructure and help

develop policies, investment plans, education and training etc for crisis situations. [70].

One such suite of analysis software is the Interdependent Energy Infrastructure

Simulation System (IEISS) developed at LANL with the collaboration of Argonne

National Laboratory (ANL). The goal of IEISS is to provide a comprehensive simulation

of national energy infrastructures and intra- and inter-infrastructure dependencies [70].

During our research we have worked with NISAC to develop a Service Oriented

Architecture for IEISS suite. Traditionally IEISS is run as a desktop application with

30

input data supplied as XML files collected from various sources, and the result is locally

generated. We have used our Web Services to provide the required input data from our

geospatial databases. Additionally our map interfaces allowed users to select

geographical regions on the maps where the simulation is executed. This integration is

detailed in Chapter 4.

Figure 2-5 – IEISS screen capture shows various energy infrastructures and interdependencies
between them in three-dimensional visualization. The infrastructures starting from the top layer are

network of crude oil pipelines, petroleum product pipelines, electric power transmission lines and
natural gas pipelines. The figure is taken from [71].

31

Chapter 3

GIS Data Grid Architecture

3.1 Overview of the System

The Grid architecture we have developed for Geographic Information Systems is a

high performance, Service Oriented Architecture [72] to support coupling archived and

real-time geospatial data with scientific applications such as simulation, visualization or

data mining software.

GIS applications that require access to and processing of very large data sets are

increasing in number with the evolution of computing resources, network bandwidth, and

storage capabilities etc. At the same time some of the applications are being designed to

consume real-time data to provide near-real time analysis results; such applications are

gaining ground in systems like Crisis Management or Early Warning Systems because

they allow authorities to take action on time. Earth observation and earthquake data

assimilation tools are good examples of this group since they use data from Seismic or

32

GPS sensors which continuously collect data. However most of these tools currently

consume data from repositories and either they do not have access to real-time data or

they do not have the capability to analyze data on the fly.

We utilize GIS standards and Web Services methodologies to couple data

assimilation tools with real-time and archived geospatial data. The system uses

publish/subscribe [73] based messaging substrate to provide high performance data

transfer between data sources and the client applications. Standard GIS interfaces and

encodings like Geography Markup Language (GML) [10], GML-Observations and

Measurements (OM) [74] and Sensor Markup Language (SensorML) [75] allow data

products to be available to the larger GIS community. The architecture supports seamless

access to both archival and real-time geospatial data through standard Web Services

interfaces. Although the issues related to online and offline geographic data differ, our

architecture provides a common platform for suppliers to make their data sets available

without much effort and easy to use tools for users to access this data.

Geographical data can be classified in two major categories according to their

sources: Online or real-time measurements collected from sensors and offline or archived

records.

Archival geospatial data has been in the core of almost every GI System since the

first example. Long history of mapping, topography and related scientific activities has

created huge spatial repositories and with the development of computing resources

numerous instances of software were produced to consume and analyze these data.

Because of the need to create universal data and service standards for the GIS

community, recent years have brought about very intensive research in this direction.

33

This research has yield to very successful outcomes and the standards produced are being

adopted in every part of the world. In addition to the standards development the internet

revolution helped geospatial data to be used and integrated into very diverse web based

developments. Every day we see new examples of web sites offering access to some form

of geographic data. Online mapping tools, driving direction tools, store locators are just a

few examples. Web GIS, Internet GIS or Distributed GIS are some of the terms used to

describe these online GIS related activities [2].

Although there is enormous demand to utilize the spatial data online much of the

research in this area has been about developing data format and service standards. While

the GISystems are migrating from the traditional stand alone desktop applications or

LAN based desktop GIS to distributed systems [2] there is an obvious lack of thrust

towards service based approaches. The distributed GI services are mostly developed as

traditional, well known client/server architectures such as Java Servlets. In this chapter

we describe our approach which not only adopts the latest industry standards but also

conforms to Service Oriented Architecture principles.

3.2 Major Components of the Architecture

Taking into account the two types of the geospatial data, our architecture consists of

two major parts:

1 - GIS Data Grid for providing unified access to archived, offline geographic data

stored in various distributed databases,

2 – Real-Time Data Services to provide access to online, real-time sensor

measurements, or streaming observations collected from various sources.

34

Each of these parts consists of several Web Services and separately they provide

access to different types of data hence they can be thought of independent Grid

architectures. Therefore the complete SensorGrid architecture is an example of the Grid

of Grids [29] paradigm.

We discuss the details of these parts in the consecutive chapters; here we give a

short overview of the architecture and the service components.

The most important component of the Archival Data Grid is the Web Feature

Service [15]. Web Feature Service (WFS) is an Open Geospatial Consortium [76] service

for sharing vector geographic data on the web. Details of this service are discussed in

Chapter 4, here we only discuss how it is used in the overall architecture. The WFS

accesses various geospatial databases to retrieve and present the data to the users in a

standard format. However because the specification describes a HTTP GET/POST based

service we have extended it by implementing a Web Service version which allowed us to

integrate several installations of this service and other Web Services to create Grids for

particular purposes. For instance a Web Map Service [14] can be used to provide an

interface to the WFS and allow users to interact with it via online maps. Reference [68]

demonstrates one such example.

Although the first Web Service version of the WFS was successfully used in several

GIS Grid projects, for several reasons explained in Chapter 4 and 5 we have created a

streaming version, which uses a publish/subscribe system to stream data to the clients.

This method allows the WFS to serve arbitrarily large amount of geographic data in high

rates [77].

35

Therefore our archival GIS Grid architecture has two major types of data services,

streaming and non-streaming WFSs. Users may choose to use any one of these services

depending on the capabilities implemented on the client side. The non-streaming WFS is

a traditional Web Service which does not require any additional capabilities on the client

side, however to use the streaming version the clients need to implement streaming

publish/subscribe API. Furthermore our services have additional capabilities for

performance improvements such as Binary XML framework integration for shrinking the

query results in XML. To use these capabilities the clients need to have appropriate API

implementations. However existence of these capabilities does not prevent Web Service

clients from using the basic WFSs since they can serve the results in simple XML

Schema types.

The second part of the overall architecture is the Real-Time Data Grid which

consists of Real-Time Filter services and publish/subscribe messaging system. We

explain the details of this architecture in Chapter 6. The Real-Time Filter Services are

data processing or analysis applications exposed as Web Services and connected with

each other via publish/subscribe messaging substrate. Real-time messages collected from

sensors are processed using these services. Filters are usually connected as chains to

realize complex tasks. The fact that they use a topic based publish/subscribe system

provides us an important ability to access original and processed data products via

different topics. This method allows creation of many different types of chains for

various tasks. The system provides continuous access to sensor streams for large number

of clients. In fact because we can create publish/subscribe networks there is no limit on

36

the number of sensors or clients the system can support. Chapter 7 gives detailed

performance evaluation of the Real-Time Data Grid architecture.

Figure 3-1 - SensorGrid Architecture consists of archival and real-time services. A publish/subscribe

messaging system is used to stream large archival data and real-time sensor messages to the clients.

Figure 3-1 illustrates the overall SensorGrid architecture with both archival and

real-time data services. The major components in the system are Web Feature Service,

Streaming-Web Feature Service, Real-Time Filter Services, Publish/Subscribe Messaging

System and Registry Service.

 All services in the system have traditional Web Service endpoints or WSDL [78]

URLs. To provide easy access and search capabilities for the active services in the system

we use a UDDI service as services registry. The UDDI implementation we use in this

37

architecture is a specialized implementation of the UDDI specification [79] which has

GIS specific extensions. This UDDI registry service is part of a larger Information

Services project developed in Community Grids Lab [80], more information can be found

in [81-86].

Each service in the system publish its WSDL URL to the UDDI [79] registry at the

time of initialization. The registry service URL is supplied to the services before

initialization. The registry service also provides search capabilities, which is useful for

discovering particular GIS capabilities by the users. For instance a user may want to see

WFS instances which have access to data for a particular geographic region, or sensors

physically located in a particular region. We also have a JSP interface (Client Proxy) that

displays the available services and sensors in the registry and makes use of UDDI

service’s search capabilities for the user. Using this interface the clients can view the

capabilities of each service, available geographic features, and real-time sensors or filter

services. The Client Proxy also provides the required information to the client for

receiving streaming real-time messages.

To summarize the architecture we go back to Figure 3-1:

· The dotted lines represent one time access to the UDDI registry by other services

to register their WSDL URLs at the time of initialization. The streaming and non-

streaming WFSs access to GIS databases using JDBC connections. We use

several MySQL [87] databases for this purpose.

· The WFS communicates with the Client as a traditional Web Service, request and

response SOAP messages are transported over HTTP. The streaming-WFS is

accessed via HTTP, and the request messages are submitted in the conventional

38

Web Service way, however it does not return the results over HTTP rather utilizes

the publish/subscribe system to stream the results.

· On the real-time data grid side we have several filter services which communicate

through the publish/subscribe system. Usually these filters are connected as

chains as depicted in the figure. The standards WSDL interfaces provide

capabilities such as starting, stopping or resuming the filter operation and

providing metadata about filter.

· The real-time data sources are integrated into the architecture through the pub/sub

system. Typically sensor messages are collected through a proxy server and then

disseminated for use, in such cases we use a filter to connect to the proxy servers

and receive messages to publish to a topic on the messaging substrate. We then

deploy subsequent filters around the messaging substrate to process these raw

sensor messages. In the pictures the sensors are represented as clouds; as an

example we use GPS networks for representing the sensor networks.

3.3 Summary

In this chapter we have given an overview of our Data Grid Architecture for Geographic

Information Systems. The architecture consists of two major parts corresponding to

archival and real-time geospatial data. We adopt open geographic standards for data and

service interfaces and Web Service standards for implementing the data services which

allows us to create and manage scientific workflows for complex data analysis cases. We

also summarize a novel approach for processing the real-time sensor messages. This

39

approach is based on using filters as Web Services and creating chains of filters for more

complex analysis cases.

40

Chapter 4

Grid Architecture for Archival GIS Data

4.1 Introduction

In this chapter we discuss our approach to build a Service Oriented Architecture for

archival geographic data and give detailed descriptions of the services developed as part

of this architecture.

To build a GIS Data Grid we adopt the most common industry standards for

geospatial data descriptions which allow our data products to be available to the larger

GIS community, and our services to be compatible with others. The Grid architecture we

built composes of several Web Services for managing, accessing and providing

geospatial data. The data service components can access and query distributed geospatial

databases, and make the data available to the users in the commonly used formats. This

approach ensures interoperability on service type, and the data format levels. Web

Services approach allows our GIS data services to be used in conjunction with other

services using workflow management tools. These additional services may include

41

mapping, or visualization services to illustrate the data in graphical formats. In this

chapter we discuss some examples of this approach.

4.2 Data Grids for Geographic Information Systems

GIS applications developed by various vendors and academic institutions have

become more complex as they are required to process larger data sets, utilize more

computing power and in some cases need to collect data from distributed sources.

Traditionally GIS applications are data centric: they deal with archived data. However,

with sensor-based applications gaining momentum the need of integrating real-time data

sources such as sensors, radars, or satellites with high end computing platforms such as

simulation, visualization or data mining applications introduces several important

distributed computing challenges to GIS community.

Although commercial GIS applications provide various solutions to these problems,

most of the solutions are based on more traditional distributed computing paradigms such

as static server-client approaches. Traditional point to point communication approaches

tend to result in more centralized, tightly coupled and synchronous applications which

results in harder management practices for large scale systems. Modern large scale

systems on the other hand require more flexible asynchronous communication models to

cope with the high number of participants and transfer of larger data sets between them.

As in other distributed computing domains the trend in distributed GIS is moving

towards component based applications [2]. This is due to the fact that the previously used

distributed GIS technologies such as CORBA/IIOP and COM+/ActiveX type frameworks

were not able to address the major interoperability issues. Although these are very

42

successful frameworks, their use are constrained with proprietary client applications and

specific types of middle tier servers. For instance a typical distributed GIS architecture

involves three tiers [2]; a Client Tier which contains a Java Applet, a Middle Tier which

contains a CORBA/Application server and a Server Tier which contains a GIS Server or

a Database. In this type of architecture the client has to be aware of the CORBA

programming techniques to communicate with the middle tier application server.

A complete GIS architecture contains three major types of service components:

presentation, logic and data. For instance, consider an online mapping application; here

the web server is responsible for the presentation by displaying the map images. The

underlying logic engine which creates the map image can be either on the client side

(thick client), or on another server. The engine usually communicates with a geospatial

database, which contains the map data. As we can see, even the simplest type GIS

application has several distributed components and interoperability between these

components must be realized. When we think about the bigger picture where hundreds,

even thousands of data repositories, data analysis and visualization applications are

available, we realize the need for GIS standards to make interoperability possible.

4.2.1 Web Services

However it is also obvious that the diversity of the GIS applications and data

sources is a great challenge. That is where a new breed of distributed systems approach

may help: the Web Services. “A Web Service is an interface that describes a collection of

operations that are network accessible through standardized XML messaging.” [88]. In

practice the interface, operations and the XML messaging are standardized. The

important thing about the service interface is that it hides the implementation logic from

43

the users, which allows the service to be used on different platforms than which it was

implemented. Also any application capable of communicating through the standard XML

messaging protocol and regardless of with which programming language it was

developed in can use the service through the standard interface. These properties allow

Web Services based frameworks to be loosely coupled and component oriented. Because

of the standard interfaces and messaging protocols the Web Services can easily be

assembled to solve more complex problems.

One significant aspect of the Web Services is that they allow program-to-program

communications. With the help of several Web Services specifications a complete cycle

of describing, publishing, and finding services can be made possible. As new

specifications are being developed and the industry matures the system integration that

includes these steps will eventually happen dynamically in runtime.

The major difference between the Web services and the other component

technologies is that, the Web services are accessed via the ubiquitous Web protocols such

as Hypertext Transfer Protocol (HTTP) and Extensible Markup Language (XML) instead

of object-model-specific protocols such as Distributed Component Object Model

(DCOM) [89] or Remote Method Invocation (RMI) [90] or Internet Inter-Orb Protocol

(IIOP) [91].

Obviously the capabilities offered by the Web Services can be of great benefit to

the geo-science community as well. Because the possibility of accessing various types of

geospatial data sources and applications using standard service interfaces may help

solving the interoperability issues the GIS community has long suffered. But what kinds

of standards are really required for service components and databases to be interoperable?

44

According to Kirtland [91] the Web Service specifications and technologies address

following requirements for service-based technologies:

· A standard way to represent data

· A common, extensible, message format

· A common, extensible, service description language

· A way to discover services located on a particular Web site

· A way to discover service providers

Currently there are several universally used standards to address these

requirements: XML is the common choice for representing the data while Simple Object

Access Protocol (SOAP) [92] is universally being used for information exchange. SOAP

provides rules for describing how to use XML to represent data as well as conventions

for representing remote procedure calls (RPCs) and bindings to the HTTP protocol. Web

Service Definition Language (WSDL) [78] is used to describe what type of message a

Web Service accepts and generates. Available protocols such as Web Services Dynamic

Discovery can be used to locate services. Universal Description, Discovery, and

Integration (UDDI) specification [79] can be used by the service providers to advertise

the existence of their services.

4.2.2 Open Geographic Standards

From the GIS perspective the problems being addressed by the Web Services are

also being discussed by the geo-scientists. In recent years several organizations have

started developing standards to address interoperability issues on data and application

45

levels. The standard bodies aim to make the geographic information and services neutral

and available across any network, application, or platform.

Currently the two major geospatial standards organizations are the Open Geospatial

Consortium (OGC) and the Technical Committee tasked by the International Standards

Organization (ISO/TC211). The OGC is an international industry consortium of more

than 270 companies, government agencies and universities participating in a consensus

process to develop publicly available interface specifications. OGC Specifications

support interoperable solutions that "geo-enable" the Web, wireless and location-based

services, and mainstream IT. OGC has produced many specifications for web based GIS

applications such as Web Feature Service [15] and the Web Map Service (WMS) [14].

Geography Markup Language (GML) [10] is widely accepted as the universal encoding

for geo-referenced data. The OGC is also defining the SensorML [75] family of

specifications for describing properties of sensors and sensor constellations and sensor

observations. On the other hand ISO Standards proposes a standard framework for the

description and management of geographic information and geographic information

services. ISO/TC 211 did not specify the actual implementation specifications for

different platforms and the private software vendors. Instead, ISO/TC 211 defines a high-

level data model for the public sector, such as governments, federal agencies, and

professional organizations [2]. The scope ISO/TC 211 is described as following on the

working group’s web page [93]:

Scope: Standardization in the field of digital geographic information.

46

This work aims to establish a structured set of standards for information

concerning objects or phenomena that are directly or indirectly associated with a

location relative to the Earth.

These standards may specify, for geographic information, methods, tools and

services for data management (including definition and description), acquiring,

processing, analyzing, accessing, presenting and transferring such data in

digital/electronic form between different users, systems and locations.

The work shall link to appropriate standards for information technology and

data where possible, and provide a framework for the development of sector-

specific applications using geographic data.

In short the OGC is interested in developing both abstract definitions of OpenGIS

frameworks and technical implementation details of data models and to a lesser extent

services and the ISO/TC 211 focuses on high-level definition of geospatial standards

from an institutional perspective [2].

Both of these major geospatial standard bodies have been formed in 1994 and until

1997 they have worked independently and produced several often overlapping standards.

But after 1997 because of the strong demand from the industry they have been working

closely to align their work to produce compatible standards.

4.2.3 Web Services for GIS

Today major GIS software companies such as ESRI, ERDAS, AutoDesk and

INTERGRAPH are member of the OGC and participating in the interoperability

programs, thus helping shape the next generation geospatial data and service standards.

Furthermore we are seeing an increasing number of governmental and municipal

47

contributions at a global level based on OGC standards. There is also increasing interest

in the academic community towards OGC standards and specifications [12]. This is also

an indicator of the consensus between the software vendors, governments and academia

for an interoperable GIS infrastructure.

Considering the strong background from the industry and backing of scientists,

experts and several research institutions we expect to see wider deployment and

acceptance of OGC specifications, both at national and global level. For these reasons we

have used OGC service and data specifications to build a GIS Data Grid.

The OGC specifications can be studied in two groups: data and service

specifications. The geospatial data issue is a multi dimensional and complex problem.

There are several types of geospatial data: satellite imagery, aerial images, coverages,

maps, vector data, sensor measurements, raster data etc. The GI Services are also diverse

applications ranging from the ones making the data available to the end user to others

doing more complex coordinate transformations and computations. In the next section we

discuss the OGC approach to the common data format and services problem.

4.2.4 Common Data Format

The OGC has produced many specifications for web based GIS applications such as

Web Feature Service (WFS) [15] and the Web Map Service (WMS) [14]. The data model

developed by OGC is the Geography Markup Language (GML) [10] and it is currently

widely accepted as the universal encoding for geo-referenced data.

The first step for building GI Services is to decide appropriate encodings for

describing the data. The importance of the data format lies in the fact that it becomes the

basic building block of the system which in turn determines the level of interoperability.

48

Use of a universal standard like XML greatly increases the number of users from

different backgrounds and platforms who can easily incorporate our data products into

their systems. Furthermore, services and applications are built to parse, understand and

use this format to support various operations on data. So in a sense the type and variety of

the tools being used in the development and data assimilation processes depend on the

format initially agreed.

For these reasons we use Geography Markup Language (GML), a commonly

accepted XML based encoding for geospatial data, as our data format in our GI Services.

One important fact about GML is that, although it offers particular complex types for

various geospatial phenomena, users can employ a variety of XML Schema development

techniques to describe their data using GML types. This provides a certain degree of

flexibility both in the development process and in the resulting data products. For

instance, depending on the capability of the environment schema developers may

exclusively use certain XML Schema types and choose not to incorporate more obscure

ones because of incompatibility issues. As a result a particular geospatial phenomenon

can be described by different valid GML schemas.

GML is an XML grammar written in XML Schema for the modeling, transport, and

storage of geographic information including both the spatial and non-spatial properties of

geographic features; it provides a variety of kinds of objects for describing geography

including features, coordinate reference systems, geometry, topology, time, units of

measure and generalized values.

Just as XML helps the Web by separating content from presentation GML does the

same thing in the world of Geography. GML allows the data providers to deliver

49

geographic information as distinct features. Using latest Web technologies, users can

process these features without having to purchase proprietary GIS software.

By leveraging related XML technologies such as XML Schema [94], XML Data

Binding Frameworks, XSLT, XPath, XQuery etc. a GML dataset becomes easier to

process in heterogeneous environments.

Figure 4-1 - OGC Geometry Model is based on three major geometry constructs, point, curve and

surface. The other necessary geometry constructs are created using these main types.

Basically GML is an abstract model for geographic data which can be used to

encode:

· Features: abstract representations of map entities.

· Geometry: encode abstractly how to represent a feature pictorially.

· Coordinate reference systems

· Topology

· Time, units of measure

50

· Observations and Measurements data collected from Sensors.

By incorporating GML in our systems as de facto data format we gain several

advantages:

1. It allows us to unify different data formats. For instance, various organizations

offer different formats for position information collected from GPS stations. GML

provides suitable geospatial and temporal types for this information, and by using

these types a common GML schema can be produced. Several GML schemas we

have developed are given in the Appendix A. (See also

http://www.crisisgrid.org/html/servo.html for more GML schemas for GPS and

Seismic data)

2. As more GIS vendors are releasing compatible products and more academic

institutions use OGC standards in their research and implementations, OGC

specifications are becoming de facto standards in GIS community and GML is

rapidly emerging as the standard xml encoding for geographic information. By

using GML we open the door of interoperability to this growing community.

3. GML and related technologies allow us to build general set of tools to access and

manipulate data. Since GML is an xml dialect, any xml related technology can be

utilized for application development purposes. Considering the fact that in most

cases the technologies for collecting data and consecutively the nature of the

collected data product would stay the same for a long period of time the interfaces

we create for sharing data won’t change either. This ensures having stable

interfaces and libraries.

51

4.2.5 Data Binding

Establishing XML or some flavor of it as the default message/data format for the

global system requires consideration of a Data Binding Framework (DBF) for generating,

parsing, marshalling and un-marshalling XML messages. Marshalling and un-marshalling

operations convert between XML-encoded formats and (in our case Java) binding classes

that can be used to simplify data manipulation.

Being able to generate XML instances and parsing them in a tolerable amount of

time is one of the criteria while choosing such a framework, because message processing

time would affect overall system performance as well as the performance of the

individual XML processing component.

Another criterion to consider is the ability of the binding framework to successfully

generate valid instances according to the Schema definitions. This is a major problem for

DBFs since not all of the XML Schema types can be directly mapped to Object Oriented

Programming constructs. Some of the XML Schema types (such as Substitution Groups

which are heavily used in GML Schemas) do not correspond to types in Object Oriented

world and this causes difficulties while processing the XML documents. Various Data

Binding Frameworks offer different solutions, some of which are more elaborate than the

other and depending of the nature of the data a suitable framework must be chosen.

4.2.6 Web Feature Service

Web Feature Service is one of the major OGC service standards for creating a GIS

framework. Web Feature Service implementation specification defines interfaces for data

access and manipulation operations on geographic features using HTTP as the distributed

52

computing platform. Via these interfaces, a web user or service can combine, use and

manage geodata from different sources by invoking several standard operations [15].

OGC specifications describe the state of a geographic feature by a set of properties

where each property can be thought of as a [name, type, value] tuple. Geographic features

are those that may have at least one property that is geometry-valued. This, of course,

also implies that features can be defined with no geometric properties at all.

As a minimal requirement a basic WFS should be able to provide requested

geographical information as GML Feature Collections. However more advanced versions

support “create, update, delete and lock operations” as well.

The operations that must be supported by basic WFS are defined as follows [15]:

· GetCapabilities: A Web Feature Service must be able to describe its capabilities.

Specifically, it must indicate which feature types it can service and what operations

are supported on each feature type.

· DescribeFeatureType: A Web Feature Service must be able, upon request, to

describe the structure of any feature type it can service.

· GetFeature: A Web Feature Service must be able to service a request to retrieve

feature instances. In addition, the client should be able to specify which feature

properties to fetch and should be able to constrain the query spatially and non-

spatially.

53

Figure 4-2 – WFS Interaction Steps: Client’s interaction with WFS usually starts with a discovery

step which involves retrieving the capabilities document. After this the client may request details

about a certain feature by issuing a DescribeFeatureType request. However the most common

queries used are GetFeature requests to retrieve particular features.

Following is a typical scenario which describes the use of the above operations and

the interaction between a client and a Web Feature Service, Figure 4-2Figure 4-2 – WFS

Interaction Steps: Client’s interaction with WFS usually starts with a discovery step

which involves retrieving the capabilities document. After this the client may request

details about a certain feature by issuing a DescribeFeatureType request. However the

most common queries used are GetFeature requests to retrieve particular features.

displays these steps:

54

1. GetCapabilities: The clients (Web Map Server or users) start with requesting a

capabilities document from WFS. When a GetCapabilities request arrives, the

server may choose to dynamically create a capabilities document and returns this, or

simply return a previously created xml document.

2. DescribeFeatureType: After the client receives the capabilities document

he/she can request a more detailed description for any of the features listed in the

WFS capabilities document. The WFS returns an XML Schema that describes the

requested feature as the response.

3. GetFeature: The client may then ask WFS to return a particular portion of any

feature data. GetFeature requests contain some property names of the feature and a

Filter element to describe the query. The WFS extracts the query and bounding box

from the filter and queries the related database(s) that holds the actual features. The

results obtained from the DB query are converted to that particular feature’s GML

format and returned to the client as a FeatureCollection object.

WFS allows clients to access and manipulate the geographic features without

having to consider the underlying data stores. Clients’ only view of the data is through

the WFS interface which allows the data providers to integrate various types of data

stores with one WFS instance. Figure 4-3 displays a sample case where the WFS server is

accessed by different types of clients and has access to various types of spatial databases.

Clients interact with WFS by submitting database queries encoded in OGC Filter

Encoding Implementation [95] and in compliance with the Common Query Language

[96]. The query results are returned as GML FeatureCollection documents.

55

Figure 4-3 – WFS may interact with multiple databases and various types of clients. In this figure the

WFS server ha access to three different types of databases which hold various types of data. The

clients interact with the WFS via standard WSDL interfaces.

OGC Web Feature Service implementation specification [15] defines HTTP as the

only explicitly supported distributed computing platform which requires use of one of the

two request methods: GET and POST. Although SOAP messages are also supported, they

are also required to be transported using HTTP POST method. OGC WFS

implementation specification [15] states that:

56

At present, the only distributed computing platform (DCP) explicitly supported by

OGC Web Services is the World Wide Web itself, or more specifically, Internet

hosts implementing the Hypertext Transfer Protocol (HTTP).

HTTP supports two request methods: GET and POST. One or both of these methods

may be defined for a particular web feature service and offered by a service

instance.

However employing HTTP protocol and GET or POST introduces significant

limitations for both producers and consumers of a service. As discussed above Web

Services provide us with valuable capabilities such as providing standard interfaces to

access various databases or remote resources, ability to launch and manage applications

remotely, or control collaborative sessions etc. Developments in the Web Services and

Grid areas provide us with significant technologies for exposing our resources to the

outer world using relatively simple yet powerful interfaces and message formats.

Furthermore sometimes we need to access several data sources and run several services

and for solving complex problems. This is extremely difficult in HTTP services but

rapidly developing workflow technologies for Web and Grid Services may help us

orchestrate several services. For these reasons we have based our WFS implementation

on Web Services principals.

Furthermore complex scientific applications require access to various data sources

and run several services consecutively or at the same time. This is not in the scope of

HTTP but can be supported using rapidly developing workflow technologies for Web and

Grid Services. For these reasons we have based our Web Feature Service implementation

57

on Web Services principals. Our goal is to make seamless coupling of GIS Data sources

with other applications possible in a Grid environment.

GIS systems are supposed to provide data access tools to the users as well as

manipulation tools to the administrators. In principle the process of serving data in a

particular format is pretty simple when it is made accessible as files on an HTTP or FTP

server. But additional features like query capabilities on data or real-time access in a

streaming fashion require more complicated services. As the complexity of the services

grows, the client’s chance of easily accessing data products decreases, because every

proprietary application developed for some type of data require its own specialized

clients. Web Services help us overcome this difficulty by providing standard interfaces to

the tools or applications we develop.

No matter how complex the application itself, its WSDL interface will have

standard elements and attributes, and the clients using this interface can easily generate

methods for invoking the service and receiving the results. This method allows providers

to make their applications available to others in a standard way.

Most scientific applications that couple high performance computing, simulation or

visualization codes with databases or real-time data sources require more than mere

remote procedure call message patterns. These applications are sometimes composite

systems where some of the components require output from others and they are

asynchronous, it may take hours or days to complete. Such properties require additional

layers of control and capabilities from Web Services which introduces the necessity for a

messaging substrate that can provide these extra features.

58

4.2.7 Web Service Implementation of Web Feature Service

We have initially implemented Web Service version of a basic WFS which supports

the three mandatory operations through a WSDL interface: GetCapabilities,

DescribeFeatureType and GetFeature.

Following picture depicts the components of the WSDL document for this

implementation:

Figure 4-4 –WSDL Components of our WFS implementation. We expose three basic capabilities

required by the WFS specification as the Web Service operations.

Each supported operation takes an XML document as argument and returns another

XML document as response. While implementing these operations in a Web Service

context we have to choose appropriate types. Since the requests and responses are well-

defined XML documents one possibility is to create object representations of these in our

favorite programming language, i.e. we can create a Java Object for each GetFeature

request document and the returning GML document can be another Java object. So the

communication between WFS and the client is based on exchanging Java objects.

However this approach severely undermines the interoperability with clients who might

use other programming languages such as C++ or Python to communicate with our

service.

As a simpler solution we have used strings as argument and return types in these

operations. This allows clients who use other programming languages to create client

59

stubs to our WFS-WSDL to simply send and receive XML documents without any

conversions. However this method also has its shortcomings which are described in the

WFS Performance section.

We chose MySQL as our data store to use with our WFS implementation. We have

collected several types of geographic data from various online sources and inserted these

to our database. Some of the data types are:

· QuakeTables Fault Database [97], SERVO [13, 98] fault repository for California.

Compatible with GeoFEST, Disloc, and VirtualCalifornia [99]

· GPS Data sources and formats (RDAHMM [58] and others).

JPL time series [100]

SOPAC time series [101]

USGS time series [102]

· Seismic Event Data (RDAHMM and others)

Southern California Seismic Network (SCSN) format seismic records [103]

Southern California Earthquake Data Center (SCEDC) format records [104]

Dinger-Shearer format seismic records [105]

Haukkson format seismic records [106]

Also to support producing meaningful maps by Web Map Service [69] we have

U.S. and World map data including borders, county boundaries, cities etc. Since we

heavily work on seismic and GPS data for California we have several additional features

like fault lines, rivers, lakes for this state.

60

4.3 Web Feature Service Architecture

4.3.1 Creating a Geospatial Database

The geospatial data may be obtained from various types of sources, such as online

repositories, coordinate, raster or vector data files, online sensors, satellites etc. To

facilitate data collection from various sources we wrote several tools such as HTTP, FTP

Clients which download files from online servers. However some of geospatial data such

as seismic records or GPS time series are dynamic, and continuously updated. To keep

our geospatial database up to date, we also wrote services that can be set up to execute

periodic downloads and database insertions. Once the data are available locally they must

be inserted into the database for future queries.

Today a large volume of geographic data is available online and WFS can be

thought of as a unified solution to serve this data in a common format. We have

introduced a simple approach to create relational database tables for various types of

geospatial data which are used by WFS for creating GML FeatureCollection objects. This

approach allowed us to support various types of geographic queries generated by the

clients. Mostly these are SELECT queries asking for a set of one or more feature types

but we also support intersections junctions, overlays etc.

Consider the following segment from SCEDC seismic catalog for year 2004[104]

[107] :

Table 4-1 – Sample Data from SCEDC Seismic Catalog

#YYY/MM/DD HH:mm:SS.ss ET MAG M LAT LON

2004/01/01 00:28:59.26 le 1.52 l 34.163 -116.424

61

2004/01/01 01:31:28.13 le 1.60 h 34.384 -116.922

2004/01/01 01:58:38.83 le 2.03 l 32.232 -115.726

DEPTH Q EVID NPH NGRM

13.1 A 14018180 29 407

1.0 A 14018196 30 554

7.0 C 14018200 15 205

We can easily deduce that the latitude and longitude values are the only geographic

information available for this particular data type. To store the data we create a database

table as following:

Table 4-2 – MySQL Database Table structure for SCEDC Seismic Records

For this feature type the queries are quite simple because each line in the original

ASCII file actually corresponds to a geographic point and the metadata associated with

that point and more complex queries such as intersections or junctions are not necessary.

mysql> describe scedc;
+----------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+----------------+--------------+------+-----+---------+-------+
YEAR	year(4)	NO			
MONTH	tinyint(2)	NO			
DAY	tinyint(2)	NO			
DATE	double	NO			
HOUR	tinyint(2)	NO			
MINUTE	tinyint(2)	NO			
SECOND	decimal(9,2)	NO			
ET	char(2)	NO			
MAGNITUDE	decimal(9,2)	NO			
MAGNITUDE_TYPE	char(1)	NO			
LATITUDE	decimal(9,3)	NO			
LONGITUDE	decimal(9,3)	NO			
DEPTH	decimal(9,1)	NO			
QUALITY	char(1)	NO			
EVID	int(11)	NO			
NPH	tinyint(3)	NO			
NGRM	tinyint(4)	NO			
+----------------+--------------+------+-----+---------+-------+

17 rows in set (0.01 sec)

62

However for more complex features that contain several points, lines or polygons we

need to find minimum and maximum values of the location elements to support queries.

Another example feature type is California Fault lines. Each fault consists of a

number of segments. We can think of each segment as a direct line between two points.

For instance following data describes several segments of the San Andreas Fault:

Table 4-3 – Sample geospatial data, California fault lines

Fault Name Segment Number Coordinates

San Andreas 62 -115.8,33.42 -115.73,33.37

San Andreas 61 -115.93,33.52 -115.86,33.47

San Andreas 60 -116.6,34.01 -116.52,33.98

Following database table is created to hold the fault segments data:

Table 4-4 - MySQL Database Table structure for California fault lines

Since the geospatial entry for his data type is “line type” we need to define two

points for each segment, a starting point and an end point. Once we have the geographic

data in the database the WFS can connect and execute queries. However we still have to

find a way which allows easy addition of new feature types to the database. The

mysql> describe ca_faults;
+-------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+--------------+------+-----+---------+-------+
Name	varchar(100)	YES			
Segment	varchar(100)	YES			
Author	varchar(100)	YES			
coordinates	varchar(100)	YES			
LatStart	double	YES		0	
LatEnd	double	YES		0	
LonStart	double	YES		0	
LonEnd	double	YES		0	
+-------------+--------------+------+-----+---------+-------+
8 rows in set (0.00 sec)

63

challenge here is that geographic data is extremely diverse; it may be as simple as a point

and as complex as topographic data or complex features with 3 dimensions. Our database

and WFS integration scheme should be flexible enough to allow easy addition of these

various kinds of features to the database and consecutively fast generation of the

corresponding GML documents. We have developed a simple and easy to adopt system

to solve this problem. Our approach requires creation of a set of files as described below:

4.3.2 Adding New Features

For each new feature type to be added we first create a definitive xml Schema. This

schema inherits necessary GML schemas and describes both geographic information and

non-geographic metadata about the feature.

The second step is to create a sample xml instance from the xml Schema with all

the possible element and attributes present. This is the xml skeleton of the feature type or

simply an ‘empty’ feature-xml document and should not have any actual element or

attribute values.

The third file to be created is a mapping file that associates the sample xml instance

with the relational database table. This xml file contains several MapElement elements

each of which has two attributes: XSDNodeXPath and DBColumnName. The first

attribute contains the XPath [108] path to a particular element in the xml instance while

the second one contains the relational database column name for that particular element.

For instance the mapping entry for the Magnitude column from the SCEDC [107] seismic

catalog example is:

<MapElement No =" 6" XSDNodeXPath =" //Magnitude " DBColumnName=" MAGNITUDE"/>

64

Here the XPath value to this element in the xml-instance is //Magnitude and the

actual magnitude values are stored in the MAGNITUDE column.

The last file is the configuration file for this feature type which includes the

database connection information, physical paths of the aforementioned files, names of the

columns that contain maximum and minimum values for the geographic data and

metadata.

To further explain our approach we give the required files created for SCEDC

seismic catalog. Following picture depicts a graphical representation of the XML schema

describing seismic events.

Note from the above schema that the geographic information entry is described

using a complex type “gml:PointPropertyType ” inherited from the GML2 schemas:

<element name =" Location " type =" gml:PointPropertyType "/>

The gml:Point type has two choices, gml:coord and gml:coordinates.

gml:coord type is extended from gml:CoordType which contains X, Y and Z values

for three dimensional coordinate systems.

65

Figure 4-5 - XML Schema for SCEDC and SCSN Seismic Catalogs

66

For instance we can encode GPS measurements with this complex type since these

measurements contain Latitude, Longitude and Height values.

The geographic element for the fault schema would be

since the fault segments are actually lines and contain multiple coordinates. For instance:

The second file is an xml instance generated from the schema:

<xs:element name =" SegmentCoordinates " ref =" gml:lineStringProperty "/>

<gml:lineStringProperty >

 < gml:LineString srsName =" EPSG:4230">

 <gml:coordinates >-82.7335,27.8846,1.0 -82.7586,28.1352,1.0 -

82.6368,28.4571,1.0 -82.7335,27.8846,1.0 -82.7218,28.1763,1.0 -

82.5235,28.6658,1.0 -82.2489,27.2001,1.0 -81.5399,28.6771,1.0 -

81.1583,28.4414,1.0 </ gml:coordinates >

 </ gml:LineString >

</ gml:lineStringProperty >

67

Here the element that holds geographic information which is inherited from the

GML schema is

<?xml version="1.0" encoding="UTF-8"?>

<SeismicEvent

xmlns:gml =http://www.opengis.net/gml

xmlns:xsi =" http://www.w3.org/2001/XMLSchema-instance "

xsi:schemaLocation =" http://sensorgrid.org/seismicity.xsd ">

<Date >

<Year />

<Month />

<Day/>

</ Date >

<Time >

<Hour />

<Minute />

<Second />

</ Time >

<Location >

<gml:Point srsName ="EPSG:6356">

<gml:coord >

<gml:X/ >

<gml:Y/ >

</ gml:coord >

</ gml:Point >

</ Location >

<EventType/ >

<Magnitude/ >

<MagnitudeType/ >

<Depth/ >

<Quality/ >

<NPH/>

<NGRM/>

<EventId/ >

</ SeismicEvent >

68

Note from the xml instance that none of the elements contain actual values except

an attribute which is the same value for all the features.

The third file created for this feature type is the following mapping type:

<?xml version="1.0" encoding="UTF-8"?>

<MapElements xmlns:xsi =" http://www.w3.org/2001/XMLSchema-instance ">

 <MapElement No =" 0"

XSDNodeXPath=" //Date/Year "

DBColumnName=" YEAR"/>

 <MapElement No =" 1"

XSDNodeXPath=" //Date/Month "

DBColumnName=" MONTH"/>

 <MapElement No =" 2"

XSDNodeXPath=" //Date/Day "

DBColumnName=" DAY"/>

 <MapElement No =" 3"

XSDNodeXPath=" //Time/Hour "

DBColumnName=" HOUR"/>

 <MapElement No =" 4"

XSDNodeXPath=" //Time/Minute "

DBColumnName=" MINUTE"/>

 <MapElement No =" 5"

XSDNodeXPath=" //Time/Second "

DBColumnName=" SECOND"/>

 <MapElement No =" 5"

XSDNodeXPath=" //EventType "

DBColumnName=" ET"/>

 <MapElement No =" 6"

XSDNodeXPath=" //Magnitude "

DBColumnName=" MAGNITUDE"/>

<Location >

 <gml:Point srsName =" EPSG:6356">

 <gml:coord >

 <gml:X />

 <gml:Y />

 </ gml:coord >

 </ gml:Point >

</ Location >

69

This file is used after the WFS retrieves the queried features from the database.

WFS then uses this mapping file to populate the xml instance with the results.

The last file is the following configuration file:

 <MapElement No =" 7"

XSDNodeXPath=" //MagnitudeType "

DBColumnName=" MAGNITUDE_TYPE"/>

 <MapElement No =" 8"

XSDNodeXPath=" //Location/gml:Point/gml:coord/gml:X "

DBColumnName=" LATITUDE"/>

 <MapElement No =" 9"

XSDNodeXPath=" //Location/gml:Point/gml:coord/gml:Y "

DBColumnName=" LONGITUDE"/>

 <MapElement No =" 10"

XSDNodeXPath=" //Depth "

DBColumnName=" DEPTH"/>

 <MapElement No =" 11"

XSDNodeXPath=" //Quality "

DBColumnName=" QUALITY"/>

 <MapElement No =" 12"

XSDNodeXPath=" //EventId "

DBColumnName=" EVID"/>

 <MapElement No =" 13"

XSDNodeXPath=" //NPH "

DBColumnName=" NPH"/>

 <MapElement No =" 14"

XSDNodeXPath=" //NGRM"

DBColumnName=" NGRM"/>

</ MapElements >

70

<?xml version="1.0" encoding="UTF-8"?>

<feature >

 <db>

 <type >mySQL</ type >

 <serveraddress >gf8.ucs.indiana.edu </ serveraddress >

 <dbname>cce </ dbname>

 <tablename >scedc </ tablename >

 <driver >com.mysql.jdbc.Driver </ driver >

 <username >uname</ username >

 <password >passwd </ password >

 </ db>

 <xml_instance >

<localaddress >/home/galip/wfs/seismic_instance.xml </ localaddress >

 </ xml_instance >

 <map_file >

 <localaddress >/home/galip/wfs/scedc_mapping.xml </ localaddress >

 </ map_file >

 <xmlschema >

 <localaddress >/home/galip/wfs/seismicity.xsd </ localaddress >

 </ xmlschema >

 <maxmin_column_names >

 <minx >LONGITUDE</ minx >

 <miny >LATITUDE</ miny >

 <maxx>LONGITUDE</ maxx>

 <maxy>LATITUDE</ maxy>

 </ maxmin_column_names >

 <Metadata >

 <Name>scedc </ Name>

 <Title >California Earthquake Data in SCEDC Format </ Title >

 <Abstract > </ Abstract >

 <Keywords >Seismic,WFS </ Keywords >

 <SRS>EPSG:6356</ SRS>

 <Operations >

 <Operation type =" Query "/>

 </ Operations >

 <MetadataURL >http://www.crisisgrid.org </ MetadataURL >

 </ Metadata >

</ feature >

71

WFS uses this file to locate and query the database that contains this particular

feature type. After the query results are returned it uses the file locations provided in this

file to generate the GML feature collection.

4.3.3 Web Feature Service Operation Steps

Figure 4-6 - Architectural diagram of the WFS implementation

Figure 4-6 - Architectural diagram of the WFS implementation shows the internal

structure of the WFS implementation. A typical WFS request-response cycle starts with

the client request. The Client communicates with the service via the WSDL interface. A

request may include several types of queries such as SELECT, UPDATE, DELETE etc.

Since we have implemented the basic WFS currently we only support SELECT queries.

After the request is received the WFS extracts the SQL query from the request using the

72

OGC Filter Encoding implementation [95] classes. Then the query is executed and the

results are received. At this point the WFS uses the configuration files explained above to

create the GML FeatureCollection object. Depending of the type of the WFS (Streaming

or Non-Streaming) the results are returned to the user via appropriate channel. The

streaming WFS is explained in the next section.

Here we explain the request-response cycle with example documents. A sample

query encoded according to OGC Filter Encoding Implementation [109] is as follows:

This query simply means that the user request the name, segment, author and

coordinates properties of the fault features which are inside the -150,30 -100,50

bounding box. The bounding box is defined as a rectangular region with minx, minY and

maxX, MaxY coordinates.

<?xml version="1.0" encoding="iso-8859-1"?>

<wfs:GetFeature outputFormat =" GML2"

gml =http://www.opengis.net/gml

wfs =http://www.opengis.net/wfs

ogc =" http://www.opengis.net/ogc ">

 <wfs:Query typeName =" ca_faults ">

 <wfs:PropertyName >name</ wfs:PropertyName >

 <wfs:PropertyName >segment </ wfs:PropertyName >

 <wfs:PropertyName >author </ wfs:PropertyName >

 <wfs:PropertyName >coordinates </ wfs:PropertyName >

 <ogc:Filter >

 <ogc:BBOX>

 <ogc:PropertyName >coordinates </ ogc:PropertyName >

 <gml:Box >

 <gml:coordinates >-150,30 -100,50 </ gml:coordinates >

 </ gml:Box >

 </ ogc:BBOX>

 </ ogc:Filter >

 </ wfs:Query >

</ wfs:GetFeature >

73

After the WFS receives this request it parses the xml and extracts the required

properties, query type and decodes the Filter to create a SQL query like following:

Afterwards WFS uses the configuration file of this feature type to find the database

that holds this feature and associated username and password information. Using such a

configuration file allows us to integrate several databases with one WFS. Also the

configuration file holds the location of the other required files such as the database

mapping file. WFS uses the mapping file to create the SQL query. As soon as the results

are returned the WFS uses the sample xml file and the mapping file to populate the GML

features and create a GML feature collection.

Following is a segment from the feature collection generated for the above request:

<wfs:FeatureCollection

xmlns:wfs =" http://www.opengis.net/wfs "

xmlns:gml =" http://www.opengis.net/gml "

xmlns:xsi =" http://www.w3.org/2001/XMLSchema-instance "

xsi:schemaLocation =" http://crisisgrid.org/schemas/wfs/fault_new.xsd ">

<gml:boundedBy >

 < gml:Box srsName =" http://www.opengis.net/gml/srs/epsg.xml#27354 ">

 < gml:coordinates decimal =" . " cs =" , " ts =" "> -150,30 -

100,50 </ gml:coordinates >

 </ gml:Box >

</ gml:boundedBy >

<gml:featureMember >

<fault >

 <name>Bartlett Springs </ name>

 <segment >0.0 </ segment >

 <author >Rundle J. B. </ author >

 <gml:lineStringProperty >

SELECT name, segment, author, coordinates FROM ca_f aults WHERE

(LatStart>-150 and LonStart>30 and LatEnd<-100 and LonEnd>50);

74

4.3.4 Web Feature Service Capabilities

One of the most important properties of WFS is its ability to provide metadata

about the supported features and capabilities. We have developed a method for WFS to

dynamically generate the capabilities document on the fly instead of providing a static

document. This method allows WFS to ignore feature types stored in an inaccessible

<gml:lineStringProperty >

 <gml:LineString srsName =" null ">

 <gml:coordinates >-123.05,39.57 -122.98,39.49 </ gml:coordinates >

 </ gml:LineString >

 </ gml:lineStringProperty >

</ fault >

</ gml:featureMember >

<gml:featureMember >

<fault >

 <name>Bartlett Springs </ name>

 <segment >1.0 </ segment >

 <author >Rundle J. B. </ author >

 <gml:lineStringProperty >

 <gml:LineString srsName =" null ">

 <gml:coordinates >-122.98,39.49 -122.91,39.41 </ gml:coordinates >

 </ gml:LineString >

 </ gml:lineStringProperty >

</ fault >

</ gml:featureMember >

<gml:featureMember >

<fault >

 <name>Bartlett Springs </ name>

 <segment >2.0 </ segment >

 <author >Rundle J. B. </ author >

 <gml:lineStringProperty >

 <gml:LineString srsName =" null ">

 <gml:coordinates >-122.91,39.41 -122.84,39.33 </ gml:coordinates >

 </ gml:LineString >

 </ gml:lineStringProperty >

</ fault >

</ gml:featureMember > …

75

database. To do this the WFS first collects the database information for all feature-types

and tests if it can open a connection. Then it uses the individual configuration files for

each supported feature type to generate the capabilities document. A Sample capabilities

document can be seen in the Appendix.

The capabilities document first describes the access methods to this WFS. Since the

specification is based on HTTP Get and POST methods it has Get and Post

OnlineResource elements. We provide the WSDL endpoint address instead. After the

access methods the supported feature types are listed. These feature types may be located

on various distributed databases which are opaque to the client. The last section contains

the OGC Filter Encoding capabilities supported by this particular WFS installation.

4.3.5 Performance Issues

We have tested our initial Web Service implementation of WFS in several scenarios

such as producing fault maps of Southern California, displaying seismic history of

particular regions on the map etc. A very interesting application domain was integrating

our GIS services with Pattern Informatics [65] code to forecast future seismic activities in

a selected geographic region. This test case is explained in the Use Cases section of this

chapter. Our experience with these tests showed us several important lessons:

· If the size of the GML documents provided by WFS do not exceed several

Megabytes the response time is acceptable. However for larger data sets the

response time is relatively long; and in some cases the Web Service throws time-out

exceptions. This is caused by our choice of Web Service container, Apache Axis

1.2.

76

· Web Service require us to create the whole response string on the client side and

transport to the client at once. However maximum size of the XML string depends

on the system configuration and cannot be very large because the string is created in

the memory.

4.4 Streaming Web Feature Service

The usefulness of Web Services is constrained by several factors. They can be used

in several cases such as

· The volume of data transferred between the server and the client is not high.

Actual amount of data can be transferred depends on a number of factors like the

protocol being used to communicate or maximum allowed size by HTTP;

· Time is not a determining factor. Despite the obvious advantages, current HTTP-

based implementations do not provide desirable results for systems that require

fast response and high performance. This is simply due to the delays caused by

data transfer over network, network constraints, and HTTP request-response

overhead.

The original WFS specification is based on HTTP Get/Post methods, but this type

of service has several limitations such as the amount of the data that can be transported,

the rate of the data transportation, and the difficulty of orchestrating multiple services for

more complex tasks. Web Services help us overcome some of these problems by

providing standard interfaces to the tools or applications we develop. Our experience

shows that although by using Web Services we can easily integrate several GI Services

and other services to solve complex tasks, providing high-rate transportation capabilities

77

for large amounts of data remains a problem because the pure Web Services

implementations rely on SOAP messages exchanged over HTTP. This conclusion has led

us to an investigation of topic-based publish-subscribe messaging systems for exchanging

SOAP messages and data payload between Web Services. We have used a

publish/subscribe messaging system which provides several useful features besides

streaming data transport such as reliable delivery, ability to choose alternate transport

protocols, security and recovery from network failures. In the next section we discuss

NaradaBrokering, our choice for publish/subscribe messaging system support.

4.4.1 NaradaBrokering

Community Grids Lab has been developing NaradaBrokering [110]; a distributed

messaging infrastructure which goes beyond the remote procedure call methodology pure

Web Services approach is based on. It provides two related capabilities. First, it provides

a message oriented middleware (MoM) which facilitates communications between

entities (which includes clients, resources, services and proxies) through the exchange of

messages. Second, it provides a notification framework by efficiently routing messages

from the originators to only the registered consumers of the message in question.

NaradaBrokering facilitates the idea of loosely coupled systems by supporting

asynchronous communication and it can be used to support different interactions by

encapsulating them in specialized messages called events. Events can encapsulate

information pertaining to transactions, data interchange, method invocations, system

conditions and finally the search, discovery and subsequent sharing of resources.[

NaradaBrokering]

78

Some of the important features of NaradaBrokering can be summarized as follows

[110]:

· Ensures reliable delivery of events in the case of broker or client failures

and prolonged entity disconnects.

· Provides compressing and decompressing services to deal with events

with large payloads. Additionally there is also a fragmentation service which

fragments large file-based payloads into smaller ones. A coalescing service then

merges these fragments into the large file at the receiver side.

· Provides support for multiple transport protocols such as TCP (blocking

and non-blocking), UDP, SSL, HTTP, RTP, HHMS (optimized for PDA and cell-

phone access) and GridFTP with protocol chosen independently at each link

· Implements high-performance protocols (message transit time of 1 to 2 ms

per hop)

· Order-preserving optimized message delivery

· Quality of Service (QoS) and security profiles for sent and received

messages

· Interface with reliable storage for persistent events, reliable delivery via

WS-Reliable Messaging.

· Discovery Service to find nearest brokers /resources

Additionally, NaradaBrokering allows all services to be linked by managed reliable

streams. These capabilities allow fault tolerance and asynchronous messaging with

publish-subscribe semantics [22]. A recent addition to the NaradaBrokering features is a

sophisticated management environment that controls and monitors all streams in a Grid

79

[23] and extends fault tolerance across streams, services and message brokers. The latter

allows one to control the flow of data into filters so that there is no overflow.

NaradaBrokering supports the subscription of redundant services to aid in fault tolerance.

The Web Service messages flowing in NaradaBrokering can be archived at any link. This

provides for dynamic caching to support system performance and is also used in message

throttling. NaradaBrokering has been successfully used for audio-video conferencing and

other collaborative tools in the commercial Anabas product [25] and the open source

GlobalMMCS project [111][13, 23, 26].

NaradaBrokering has been used extensively in several projects that require real-time

streaming data access. Because of its relevancy to our topic and as an example how it has

been used to provide reliable streaming support we summarize GlobalMMCS here;

4.4.2 GlobalMMCS: Using NaradaBrokering to Manage

Audio/Video Streams

We think that the nature of sensor data is somewhat similar to that of audio/video

and a Service Oriented Architecture which employs NaradaBrokering should exhibit high

performance for sensor filter services.

Global Multimedia Collaboration System [111] is designed to provide scalable

videoconferencing services to a diverse set of users. The system uses NaradaBrokering as

the media distribution medium. Topics provided by NaradaBrokering serve as the

messaging channels among participants in a session to exchange data [112].

80

Figure 4-7 - Main Components of GlobalMMCS architecture [113]

NaradaBrokering has proved to be very efficient in delivering audio and video

streams to a group of participants in a meeting.

The topic based publish-subscribe system works as follows: The source user or the

data provider publishes copy of a stream to a topic and the broker network delivers this

stream to all the subscriber of this topic by duplicating whenever necessary. To save

network bandwidth NaradaBrokering avoids sending multiple copies of the same stream

on the same link. Additionally it calculates the near-optimal routes from sources to

destinations by organizing the brokers in hierarchical cluster architecture.

This architecture provides a scalable and flexible framework to distribute media

processing units. Additional futures of NaradaBrokering allow the system to be dynamic;

the capacity of the system can be increased by easily adding new computing resources

and new processing services can be integrated to support ever changing needs of end

users. Performance of the GlobalMMCS system is investigated extensively and the

results show that the system exhibits high performance for audio/video meetings [112].

81

4.4.3 Comparison of Streaming and Non-Streaming Web

Feature Services

The Streaming-WFS uses standard SOAP messages for receiving queries from the

clients; however, the query results are published (streamed) to a publish/subscribe

messaging substrate topic as they become available. Since we use MySQL database for

keeping geographic features, we employed MySQL streaming result set capability by

streaming the results row by row. This allowed us to receive individual results and

publish them to the messaging substrate instead of waiting for whole result set to be

returned. The performance results (see Chapter 5 for detailed performance results) show

that (especially for smaller data sets) streaming removes a lot of overhead introduced by

object initializations.

Table 6 gives a comparison of the streaming and non-streaming versions of our

WFS implementations. The data requested is the Southern California seismic records for

the eventful year of 1992, initially obtained from Southern California Earthquake data

center [SCEDC] [107] and converted into GML for our Web Feature Service. The first

column is the minimum magnitude of the earthquake, the second column shows the data

size of the query result. Timings for Streaming WFS contains two columns; the first

column shows the time it takes to generate and stream out GML feature collection, the

second column shows the total response time. The fourth column shows the total

response time for non-streaming WFS. The difference between streaming and non-

streaming WFS versions is that streaming version does not accumulate the query results

and stream as soon as they become available. The timings are in milliseconds and include

object initializations, query processing, database query and transport times.

82

To measure the performance of two WFS versions we made several tests using

seismic catalog for year 1992 from Southern California Earthquake Data Center

(SCEDC). Tests were performed for the following lower bounds with seismic event

magnitudes: M = 5.0, 4.5, 4.0, 3.5, and 3.0. These correspond to increasing data file size,

as shown in Table 4-5. We measure WFS performance by timing the steps needed to

extract seismic records with specific latitude/longitude bounding boxes, time periods, and

lower bounds for the earthquake threshold magnitudes. These extracted records are

returned as GML responses. This test is representative of other applications which need

to extract records from remote databases using the WFS. In these tests data from

1/1/1992 to 12/31/1992 were requested and latitude/longitude bounding box (-117.0,

32.0)-(-114.0-37.0) was used.

Table 4-5 - Performance Comparison of Streaming and Non-Streaming WFS Versions

We can deduce from the table that for larger data sets when using streaming our

gain is about 25%. But for the smaller data sets this gain becomes about 40% which is

mainly because in the traditional Web Services the SOAP message has to be created,

transported and decoded the same way for all message sizes which introduces significant

overhead.

Event
Magnitude

Lower Bound

Number
of

Seismic
Events

Data Size
(KB)

Streaming WFS
Response Time
Non-Streaming

WFS

Time for
streaming the

result

Total
Response

Time
3 1790 880 2414.2 4570 5662.6

3.5 587 287 826.7 3405 4414

4 209 106 320.1 2945 4098.7

4.5 67 36 100 2661 3917.1

5 19 11 31.3 2425 3912.5

83

Other improvements were also made in Streaming-WFS to make it a high

performance service. These improvements are discussed in Chapter 5.

Figure 4-8 - WFS in a Grid environment. The WFS serves feature data collected from various

sources such as online file servers, local files or sensor observation archives. The collected data are

inserted into our GIS archives and served by the WFS in GML format.

Figure 4-8 shows the integration of the WFS with data sources and clients. The

WFS is able to return the results as SOAP messages or stream over the NaradaBrokering

publish/subscribe messaging substrate. This figure also summarizes our efforts to create a

GIS Data Grid. The first steps for this work required harvesting data from various

publicly accessible archives such as Southern California Earthquake Data Center

(SCEDC) seismic records, ANSS seismic archives, NASA-JPL GPS time series and

SOPAC GPS time series archives. For these purposes we have created a Data Harvester

module inside the WFS which has HTTP and FTP client implementations. We have also

84

implemented a programmable harvester tools which connects to online servers to retrieve

regularly updated seismic records.

Once the data files are retrieved from the online archives the WFS uses the methods

explained in Chapter 4.3.2 to insert these data into our spatial database. After this point

the data are served to the clients as GML documents through WFS interfaces.

4.5 Geophysical Data Grid Examples

Our WFS implementations have been used in several GIS projects as data provider

services, here we discuss two examples.

4.5.1 Los Alamos National Laboratory, NISAC SOA

Architecture

We have applied our GIS Grids ideas to create a Service Oriented Architecture for

Los Alamos National Laboratory, National Infrastructure Simulation and Analysis Center

[71]. We have integrated several Web Services including the Streaming-Web Feature

Service with IEISS (Interdependent Energy Infrastructure Simulation System) [114].

IEISS is a suite of analysis software used to understand the normal operations of the

infrastructures and various implications of the interdependencies between the

components[71]. In our sample SOA demonstration we were able to invoke IEISS to

simulate interdependencies between electrical and natural gas infrastructure components

using a provided sample data set. The data do not actually correspond to real-world

infrastructure maps however it allowed us to demonstrate that the normally desktop based

85

simulation applications could be integrated into a Grid architecture using Web Services

approach.

In the usual operation IEISS and similar software are being used as local simulation

applications. The data are either being kept in databases such as ESRI spatial database, or

in proprietary XML files. The person who runs the application collect the data to local

machine and runs the simulation. The results are usually shared with e-mails. However

this approach has several limitations; every time the simulation is to be run the data have

to be copied to the local file system, there is no way of running the simulations remotely

and getting the results instantly. So we have created an architecture consisting of several

Web Services which exposes IEISS as a Web Service and shows the analysis results on

an interactive online mapping application. Figure 8 shows the components and data flow

in this architecture.

The sample electric and natural gas infrastructure components are provided to us as

XML files. We have inserted the components into a MySQL database which allowed us

to query for specific components in particular geographic regions. Figure 9 visualizes the

components. Figure 10 shows the overlays of these components on a satellite picture

provided by the NASA OnEarth WMS Server [115]. We used an open source GML

viewer GAIA [116] to create these figures.

86

Figure 4-9 – NISAC SOA Demonstration Architectural Diagram and Data Flow

87

Figure 4-10– Original IEISS Data for the Florida State Electric Power and Natural Gas Components

Figure 4-11 – Sample Florida State Electric Power and Natural Gas Components as overlays on a

Satellite Picture provided by NASA OnEarth WMS Server. Electric power components are

connected with green, natural gas components are connected with red lines.

88

The components of this architecture are as follows:

Feature Database: This is our MySQL spatial database which holds various

geospatial features such as California faults and earthquake data, US state borders, global

seismic hotspots etc. For the NISAC SOA demonstration we have acquired a sample

XML file which contains natural gas and electric power components for the State of

Florida. This sample data is inserted into feature database as two distinct feature types.

This allows us to make geospatial queries on the feature data and obtain the desired

components as GML documents.

Web Feature Service: Provides interfaces to access and query the Feature

Database and receive the geospatial features. The features are provided as GML Feature

Collections which then can be used as map overlays or for geo-processing etc. We have

created a lightweight WFS in this project (WFS-L) which receives the new model XML

created by IEISS, converts to GML and publishes to NB.

UDDI Registry: This service provides an API for publishing and discovery of geo-

spatial and visualization services. It extends existing Universal Description, Discovery

and Integration (UDDI) [79] Information Model to provide GIS domain specific

Information Services.

Web Map Client: This is a thin client to the Web Map Server. It provides a user

interface that displays the map overlays and allows client interaction with the maps.

Web Map Server: Relays the client requests to the WFS, and receives the response

as GML documents. WMS then converts GML to map images (JPG, TIFF, SVG etc.) and

forwards these to the Web Map Client.

89

NaradaBrokering: This is a standalone publish/subscribe service. Allows

providers to publish their data products to topics and forwards this data to the subscribers

of a particular topic. We use NaradaBrokering as the messaging substrate of the system.

All GML and XML data transport is done through this service.

Context Service: The Context Service provides a dynamic, fault tolerant metadata

hosting environment to enable services to share information within a workflow session to

correlate their activities.

Context Respondent Handler: The Context Response Handler is used to

communicate with the Context Service. It allows Context Service to inform its

consumers about results of the operations.

gml2model Tool: Geospatial data exchange format for the system is GML.

According to the user’s selection WFS encodes requested geospatial feature data in GML

and publishes to a certain NaradaBrokering topic. A NaradaBrokering Subscriber tool is

used to save GML FeatureCollection published by WFS into a file. IEISS requires input

data to be in a certain format called XML Model. We wrote a tool called gml2model to

convert GML FeatureCollection documents to IEISS XML Model format.

shp2gml Tool: One type of the IEISS outputs is ESRI Shape files which show

calculated outage areas etc. We use an open source tool called shp2gml by open source

deegree project (http://deegree.sourceforge.net/) to convert these shape files to GML,

which are sent to WMS Client by the lightweight WFS.

Data Flow in this architecture is explained here (Figure 8):

0. WFS and WMS publish their WSDL URL to the UDDI Registry.

90

1. User starts the WMS Client on a web browser; the WMS Client displays the

available features. User submits a request to the WMS Server by selecting desired

features and an area on the map.

2. WMS Server dynamically discovers available WFS that provide requested

features through UDDI Registry and obtains their physical locations (WSDL

address).

3. WMS Server forwards user’s request to the WFS.

4. WFS decodes the request, queries the database for the features and receives the

response.

5. WFS creates a GML FeatureCollection document from the database response and

publishes this document to NaradaBrokering topic ‘/NISAC/WFS’; WMS Server

and IEISS receive this GML document.

WMS Server creates a map overlay from the received GML document and sends

it to WMS Client which in turn displays it to the user.

After receiving the GML document IEISS NB Subscriber invokes gml2model

tool; this tool converts GML to XML Model format to be processed by IEISS.

6. User invokes IEISS through WMS Client interface for the obtained geospatial

features, and WMS Client starts a workflow session in the Context Service. On

receiving invocation message, IEISS updates the shared state data for the

workflow session to be “IEISS_IS_IN_PROGRES” on the Context Service. Both

IEISS and WMS Client communicate with Context Service via asynchronous

function calls by utilizing Context Respond Handler Service. IEISS runs and

produces an ESRI Shape file that has the outage areas for the given region.

91

7. IEISS invokes shp2gml tool to convert produced Shape file to GML format.

After the conversion IEISS updates shared session state to be

“ IEISS_COMPLETED”. As the state changes, the Context Service notifies all

interested workflow entities such as WMS Client. To notify WMS-Client, the

Context Service publishes the updates to a NB topic

(/NISAC/Context://IEISS/SessionStatus) from which the WMS-Client receives

notifications.

8. WMS makes a request to the WFS-L for the IEISS output.

9. WFS-L publishes the IEISS output as a GML FeatureCollection document to NB

topic ‘NISAC/WFS-L’.

WMS Server is subscribed to this topic and receives the GML file then converts it

to map overlay,

10. WMS Client displays the new model on the map.

Figure 4-12 – Data flow in the IEISS Block

92

Figure 4-12 shows the data flow in the IEISS block. To use the IEISS application as

a Web Service we have created a small WSDL wrapper, which is responsible for

receiving the SOAP messages and invoking IEISS code with the received parameters.

First, the NB Subscriber receives the GML model which corresponds to the user’s

selection on the mapping client. Because the IEISS simulation requires a particular XML

format the gml2model tool converts the input to this model format. And as soon as the

WSDL engine receives the invocation message the IEISS Simulation runs on the data

already received and outputs the result as a shape file which is a specific type of vector

data format. Depending on the input parameters provided the application calculates the

affected geographic area and outputs it in the shape file.

Figure 4-13 – Sample IEISS output generated by the WMS; The blue region is the affected area

calculated by IEISS because of a possible problem with the energy infrastructure.

93

Figure 4-13 shows a sample IEISS output; here the blue region depicts the affected

outage area. This image is generated by the Web Map Service developed in Community

Grids Lab, see [17, 68, 69] for more information.

4.5.2 Pattern Informatics Integration

Pattern Informatics [65, 66] tries to discover patterns given past data to predict

probability of future events. The process of analysis involves data mining which is made

using results obtained from a Web Feature Service. The Web Map Service [69] is

responsible for collecting parameters for invoking the PI code. These parameters are then

sent to an HPSearch [117-120] engine which invokes the various services to start the

flow. The process is diagrammatically illustrated in Figure 4-14. The Code Runner

Service is a sample wrapper service that invokes the Pattern Informatics application.

As shown in the figure, the Web Map Service submits a flow for execution by invoking

the HPSearch Web Service.

Figure 4-14’s steps are summarized below. This is the basic scenario that we use

for integrating Pattern Informatics, RDAHMM, and other applications.

0. WFS and WMS publish their WSDL URLs to the UDDI Registry.

1. User starts the WMS Client on a web browser; the WMS Client displays the available

features. User submits a request to the WMS Server by selecting desired features and

an area on the map.

2. WMS Server dynamically discovers available WFSs that provide requested features

through UDDI Registry and obtains their physical locations (WSDL address).

94

Figure 4-14 - A general GIS Grid orchestration scenario involves the coordination of GIS services,

data filters, and code execution services. These are coordinated by HPSearch.

95

3. WMS Server forwards user's request to the WFS.

4. WFS decodes the request, queries the database for the features and receives the

response.

5. WFS creates a GML FeatureCollection document from the database response and

publishes this document to a specific NaradaBrokering topic.

6. WMS receives the streaming feature data through NaradaBrokering's agreed upon

topic. WMS Server creates a map overlay from the received GML document and

sends it to WMS Client which in turn displays it to the user.

7. The WMS submits a flow for execution by invoking the HPSearch Web Service. This

request also includes all parameters required for execution of the script. The

HPSearch system works in tandem with a context service for communicating with the

WMS.

8. Initially, the context corresponding to the script execution is marked as "Executing".

9. Once submitted, the HPSearch engine invokes and initializes (a) the various services,

namely the Data Filter service, that filters incoming data and reformats it to the

proper input format as required by the data analysis code, and the Code Runner

service that actually runs the analysis program on the mined data. After these services

are ready, the HPSearch engine then proceeds to execute (b) the WFS Web Service

with the appropriate GML (Geographical Markup Language) query as input.

10. The WFS then outputs the result of the query onto a predefined topic. This stream of

data is filtered as it passes through the Data Filter service and the result is

accumulated by the code runner service.

96

11. The code runner service then executes the analysis code on the data and the resulting

output can either be streamed onto a topic, or stored on a publicly accessible Web

server. The URL of the output is then written to the context service by HPSearch.

12. The WMS constantly polls the context service to see if the execution has finished.

13. The execution completes and the context is updated.

14. The WMS downloads the result file from the web server and displays the output.

4.6 Summary

In this chapter we have first discussed the data and application level interoperability

problems in GIS and presented a Service Oriented Architecture to answer these problems.

Although the open GIS standards gain ground and being accepted as the common formats

the lack of a strong application level interoperability framework is a serious issue for

distributed GIS frameworks. Therefore we have discussed that this problem could be

answered by developing Web Services based GIS Grids. We have implemented a

fundamental OGC specification the Web Feature Service as both streaming and non-

streaming Web Services and using this service created a GIS Grid. We have integrated

several scientific GIS applications with our GIS Grid Services and proved that this

approach can be used with real-world analysis and simulation applications including the

cases demanding high-performance and high rate data input.

Figure 4-15 shows the interaction of services explained in this chapter. Two major

data services we have developed for archival geographic data are streaming and non-

streaming Web Feature Services.

97

Figure 4-15 - High Performance Data Grid for Geographic Information Systems

The Client communicates with the services through traditional Web Service

interfaces. The non-streaming Web Feature Service responds to client requests via SOAP

messages transferred over HTTP, while the Streaming Web Feature Service returns the

results over a publish/subscribe messaging system. Both services provides Binary XML

support for encoding the returning XML documents as binary documents for performance

and bandwidth consumption improvements. In the next chapter we explain the streaming

services and Binary XML integration.

98

Chapter 5

Streaming Web Feature Service and Performance

of the GIS Data Grid

5.1 Introduction

Recent research discussed that SOAP is not an efficient solution for high-end data

transport [121-124] and there are several ways to improve the Web Services performance

[125-134]. One way of improving the performance of a traditional HTTP based Web

Service is to incorporate a better transport protocol. Although HTTP provides a

universally agreed upon communication platform for Web Services, it has serious

limitations in terms of providing support for larger payload transfers and high rate data

exchange. Later becomes especially apparent in the real-time or near-real time systems

with the use of SOAP envelope which increases the message size. For instance [135]

shows that the SOAP protocol increases the message sizes by a factor of four to ten as

99

compared to the binary representation. Therefore a second area where the performance

increase can be gained is to decrease the size of the SOAP message payload.

Our Web Service based implementation of the OGC Web Feature Service

Specification gave us a chance to make extensive tests to investigate the limitations of

Web Services in both of the areas mentioned above. Essentially a Web Features Service

provides a unified front for accessing different data stores to retrieve geo-spatial feature

data as Geography Markup Language (GML) formatted documents. We have initially

implemented the Web Features Service as a traditional Web Service which returned the

requested GML responses as strings embedded in the SOAP envelope. However our tests

have shown that memory related issues limited the amount of information we could

contain as in-memory strings. On the other hand we also knew that some scientific

applications require fast access to large amounts of geographic data. These conclusions

led us to the development of a streaming version of the Web Feature Service.

Our Streaming Web Feature Service has a WSDL end-point which provides the

same operations with the non-streaming version, however additionally it can employ a

topic based publish-subscribe system to stream out the GML results instead of sending

them as SOAP messages over HTTP.

We chose NaradaBrokering to provide streaming capabilities. NaradaBrokering is a

topic based publish/subscribe messaging system which provides several important

features appropriate for our use cases. Some of these properties are explained in [136]

and we summarize them here:

100

· The communication with NaradaBrokering is asynchronous; this is an important

feature where the time interval between request and response is long and this

property allows non-blocking interaction between clients and the WFS.

· NaradaBrokering supports large client configurations publishing messages at a

very high rate and there are no restrictions placed by the broker on the number,

rate or the size of the messages issued by the clients.

· Entities can specify Quality-of-Service (QoS) restraints on the message delivery

such as reliable delivery of the messages, exactly-once delivery etc. The broker

allows entities to retrieve event issued during an entity’s absence.

· NaradaBrokering also provides fragmentation/coalescing service for large data

transfers. This service breaks the large files into manageable fragments, publishes

the individual chunks. On the receiver side, these chunks are written in a

temporary storage area, and once it is determined that all the chunks are retrieved

all fragments are coalesced into a single file.

· Additionally NaradaBrokering provides capabilities for communicating through a

wide variety of firewalls and authenticating proxies.

In short using NaradaBrokering in our system gives us enormous flexibility in terms

of supporting arbitrarily large message sizes and high transfer rates. Our previous tests

show that by streaming the GML documents over publish/subscribe based messaging

broker we make significant performance gains.

In this chapter we report the results of our research efforts to further improve the

performance of the Web Features Service by incorporating Binary XML frameworks. It

should be noted that these improvements can be applied to other Web Services as well.

101

Related research shows that SOAP message transfer over HTTP has inherent

problems. One of these problems is the SOAP header that needs to be transferred along

with every message embedded in the SOAP body. Considering the fact that most of the

time Web Service clients make more than one requests from the server it becomes

obvious that the same header will be redundantly exchanged with every message between

the server and the client. One way to overcome this redundancy is to save the header only

once in a third party online repository accessible to both the Web Services server and the

client [130]. The header may be put to this repository by the server and client may

request it at the beginning of the transaction to process the incoming messages.

Another possible performance improvement can be made by reducing the size of

the data payload or the SOAP body section. XML is the universal format for the message

exchange in Web Services. However one significant drawback of the XML encoding is

that it increases the size of the raw data.

In recent years several binary XML frameworks have been developed to help

reduce XML document sizes [137]. In September 2003 The W3C ran a workshop to

study methods to compress XML documents, comparing Infoset-level representations

with other methods. The goal was to determine whether a W3C Working Group might be

chartered to produce an interoperable specification for such a transmission format [138].

The W3C has formed The XML Binary Characterization Working Group as a result of

this workshop [139]. Although the workshop concluded that there should be further wok

in this area to decide if W3C should attempt to define formats or methods for non-textual

interchange of XML many independent groups or individuals developed several binary

XML formats such as Fast Infoset [134], XBS [140] and BNUX [141]. In 2005 W3C has

102

released a Working Group Note which includes an analysis of which properties a binary

XML framework must possess and recommends that W3C produce a binary XML

recommendation [126].

Depending on the content of the XML document these binary frameworks usually

achieve significant compression rates which can be very useful in accomplishing very

good transfer times. However the encoding and decoding of the XML may introduce

significant overheads as well. Therefore the advantages and disadvantages of each binary

XML framework must be studied for each type of the data.

We have made several tests to investigate possible performance improvements to

our Streaming-Web Feature Service by using two major binary XML frameworks,

namely Fast Infoset and BNUX. Additional tests will be made with the non-streaming

Web Feature Service to see if any improvements can be made using binary XML

encodings in a traditional Web Service usage..

5.2 Streaming Web Feature Service

The Web Feature Service provides access to geographic information stored in

various distributed databases. The data is encoded as GML documents, which is a

popular XML dialect for describing geospatial entities. The Streaming- Web Features

Service has a WSDL document to describe the operations it supports, which is used by

the client to send feature requests. Essentially the client requests are made as traditional

Web Service calls, but the responses are transmitted over NaradaBrokering topics.

Along with the feature request the Client provides the Broker address and topic

information to the server. The server retrieves the desired features from the database,

103

converts these to GML and publishes these features to the given topic. Figure 1 depicts

this process.

For the performance tests we use Southern California Earthquake Data Center’s

(SCEDC) seismic data records from 1932 to 2005. In GML terms each of these records

are considered a geographic feature and represented in the GML document as an

individual<gml:featureMember > element with attributes and sub-elements as following.

A GML document usually consists of several such feature members inside a

</gml:FeatureCollection> tag.

The Web Features Service retrieves the features from the database in a streaming

fashion, i.e. we use the MySQL streaming query statement property to receive individual

query results immediately as they become available, instead of waiting for the whole

<gml:featureMember
xmlns:gml =" http://www.opengis.net/gml ">
<SeismicEvent >
 <Date >
 <Year >1992 </ Year >
 <Month >4</ Month >
 <Day>15</ Day>
 </ Date >
 <Time >
 <Hour >6</ Hour >
 <Minute >51</ Minute >
 <Second >17</ Second >
 </ Time >
 <Location >
 <gml:Point srsName =" SRS">
 <gml:coord >
 <gml:X >34.291 </ gml:X >
 <gml:Y >-117.564 </ gml:Y >
 </ gml:coord >
 </ gml:Point >
 </ Location >
 <EventType >et </ EventType >
 <Magnitude >3.47 </ Magnitude >
 <MagnitudeType >n</ MagnitudeType >
 <Depth >7.2 </ Depth >
 <Quality >B</ Quality >
 <NPH>16</ NPH>
 <NGRM>26<NGRM>
 <EventId >2038429 </ EventId >
</ SeismicEvent >
</ gml:featureMember >

104

result set to be created by the database driver. This approach improves the performance

by allowing us to create gml:featureMember elements for each individual query result

immediately upon receiving.

Another point where performance gain can be obtained is to find an optimal number of

features to accumulate inside one message before publishing to the broker topic. Usually

the clients request multiple features in one query. The WFS may choose to create a

broker event for each gml:featureMember element and publish these to the broker topic,

or may choose to publish multiple gml:featureMember elements as one broker event.

Figure 5-1 - Streaming Web Feature Service Performance Test Setup

Figure 5-1 shows the data flow in the performance test setup. In this scenario we

measure total response time, publish, subscribe and transfer times.

Ttotal = T pub + T transfer + T sub

The timings taken in this scenario are intended to find out the contributions of

publish, subscribe and transfer times to the overall performance of the system, because

these are the parts of the system which will be affected with the addition of a binary

XML framework.

105

The request-response cycle starts with the client making a GetFeature request

through WFS-Server’s WSDL interface. The server decodes this message, creates a

MySQL query and queries the database. Every individual query result returned is

converted to GML and published to the broker topic. However the total number of

features in the response affects the overall performance since the transfer time will be

changed according to the size of the message. We test the system for various message

sizes, by increasing the number of features included in each message to be published.

The individual messages published by the WFS-Server are parts of a GML Feature

Collection document, hence essentially are XML fragments. And because we stream

these fragments through a broker topic without embedding in a SOAP envelope we can

easily test the effects of using a binary XML framework by directly converting these

XML documents into a binary format.

A self-contained binary XML framework has two major parts, an encoder which

using a particular algorithm converts the text based XML document into a binary

document, and a decoder which reads the binary document and reformats it to the original

XML input. The most obvious reason for using such a framework is size compression.

Depending on the type of the data the compression rate is usually very high (See table

below). This in turn allows us to use less network bandwidth and better transfer times

which means higher performance.

However encoding an XML document into binary and decoding it back to XML can

be CPU intensive and time expensive operations. We must carefully evaluate each

framework to see if we lose more time with encoding and decoding than what we gain

from the transfer by decreasing the size of the message.

106

Figure 5-5-2 shows how we can integrate a binary XML framework with our

streaming Web Feature Service. In addition to the Streaming Web Feature Service

scenario discussed above we now have a Binary Encoder unit on the Server side which

converts the GML fragments into binary documents and a Binary Decoder on the Client

side which receives these binary documents, converts back to XML and gives to the

client process.

Figure 5-5-2 - Streaming Web Feature Service integrated with a Binary XML framework.

In this case we take additional timings to measure the time spent during encoding

and decoding steps. In this scenario the total time is the sum of all steps described in the

first step plus the binary encoding and decoding times:

Ttotal = T bin-pub + T pub + T transfer + T sub + T bin-sub

5.3 Performance Tests

As depicted in Figure 5-1, the test scenario starts with the building of the GML

Feature Collection object using the results obtained from the database. Figure 5-3 shows

the message creation time for various GML document sizes. Web Service call times are

107

not included in the following figures since these are almost constant values for all

queries. The database query time is also included in this figure.

Web Feature Service GML Creation Time

0

500

1,000

1,500

2,000

2,500

3,000

500 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

Number Of Features

T
im

e
(m

s)

GML Creation Time

Figure 5-3 – Web Feature Service GML Message (GML Feature Collection) creation times as a

function of number of the features in the message

We test the performance of the system by publishing various GML documents from

the WFS Server and measuring the total time it takes to transfer the whole file to the

client. To understand the behavior of the system for smaller and larger data transfers we

use two different groups of files. The first group contains 10 GML documents with sizes

between 10KB to 100KB. The second group contains 11 files with sizes between 500KB

to 6MB, with the number of features contained in these files increasing from 500 to

10000. The WFS Server publishes the GML documents in increasing size order.

Table 5-1 Size comparison of the documents used in the tests as textual XML files and as compressed

binary formats

Number
Of

Features

Document Size (KB)

XML BNUX Fast Infoset
100 61 24 24
500 300 75 70

1,000 600 148 139

108

2,000 1203 302 281
3,000 1805 482 422
4,000 2406 606 563
5,000 3036 758 704
6,000 3609 901 836
7,000 4210 1056 986
8,000 4817 1257 1129
9,000 5417 1483 1274
10,000 6018 1623 1402

Document Sizes
For Different Encodings

0

1000

2000

3000

4000

5000

6000

7000

100 500 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

Number Of Features in the File

F
ile

 S
iz

e
 (
K

B
)_

XML File BNUX File Fast Infoset File

Figure 5-4 - Document Sizes for different encodings.

Table 5-1 shows the size of the GML files and binary documents used in the tests.

Document sizes are reported as kilobytes. Figure 5-4 depicts the values reported in Table

5-1.

To measure the effects of using binary XML frameworks we test the system by

publishing these GML documents in textual, Fast Infoset and BNUX formats. The files

are published in two groups with the first 10 files representing smaller payloads up to

100KB, while the second group of 11 files representing larger payloads. In the tests we

publish each file for 50 times and calculate the average and standard deviations which are

shown in the figures below.

109

To understand the effect of the network distance between the broker, the publishers

and subscribers we use three different NaradaBrokering servers running at different

cities. We run the WFS-Server and the Client at our local GridFarm servers in

Bloomington, Indiana. This ensures the similar performance in all three test cases for

binary XML processing steps, encoding and decoding the documents. A typical

GridFarm server specs are given in Table 5-2.

Table 5-2 – GridFarm008 Machine configuration summary

Processor Intel® Xeon™ CPU (2.40GHz)

RAM 2GB Total

Bandwidth 100Mbps

Operating System GNU/Linux (kernel release 2.4.22)

Java Version Java 2 platform, Standard Edition (1.5.0-06)

Table 5-3 - Test Cases

Test Case 1 - NB Server in Bloomington, IN

 1.a Textual XML Transfer Performance

 1.a.1 Small Files

 1.a.2 Large Files

 1.b BNUX Integration Performance

 1.b.1 Small Files

 1.b.2 Large Files

 1.c Fast Infoset Integration Performance

 1.c.1 Small Files

 1.c.2 Large Files

Test Case 2 - NB Server in Indianapolis, IN

 2.a Textual XML Transfer Performance

 2.a.1 Small Files

 2.a.2 Large Files

 2.b BNUX Integration Performance

 2.b.1 Small Files

 2.b.2 Large Files

 2.c Fast Infoset Integration Performance

 2.c.1 Small Files

110

 2.c.2 Large Files

Test Case 3 - NB Server in La Jolla, CA

 3.a Textual XML Transfer Performance

 3.a.1 Small Files

 3.a.2 Large Files

 3.b BNUX Integration Performance

 3.b.1 Small Files

 3.b.2 Large Files

 3.c Fast Infoset Integration Performance

 3.c.1 Small Files

 3.c.2 Large Files

5.4 Performance Test Results

5.4.1 LAN Tests

In this configuration the WFS and NaradaBrokering servers and the WFS Client run

on GridFarm servers, shown in Figure 5-5. Since the test components run on the same

servers and share the same file system, this is the ideal situation in terms of data transfer

time.

Figure 5-5 Test Configuration for the first case

111

5.4.1.1 Streaming WFS Performance with Textual XML Transfer

The first test measures the data transfer time on the network for exchanging textual

GML documents which includes publish time on the server side; receive time on the

client side and actual wire transfer time. Figure 5-6 and Figure 5-7 shows the test results

for smaller and larger data sizes.

Table 5-4 - Average XML transfer times and standard deviations

Numbe r
of

Features

Average
Transfer

Time (ms)

Standard
Deviation

10 3.00 1.23

20 3.86 1.45

30 3.68 1.25

40 4.22 1.15

50 4.86 1.01

60 5.18 0.83

70 5.38 1.03

80 5.60 0.99

90 6.12 0.94

100 7.34 1.21

Number
of

Features

Average
Transfer

Time (ms)
Standard
Deviation

500 19.14 5.03

1,000 35.26 3.23

2,000 71.90 9.65

3,000 108.66 10.00

4,000 146.50 13.53

5,000 198.24 24.88

6,000 245.08 26.14

7,000 284.24 24.07

8,000 326.10 35.42

9,000 346.74 36.03

10,000 414.34 63.00

112

NB Transfer Times
TCP / XML

NB Server @ Bloomington

0

1

2

3

4

5

6

7

8

10 20 30 40 50 60 70 80 90 100

Number Of Features

T
im

e
 (
m

s)

Average StDev

Figure 5-6 Average transfer times and standard deviations for small payloads

NB Transfer Times
TCP / XML

NB Server @ Bloomington

0

100

200

300

400

500

500 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

Number Of Features

T
im

e
 (
m

s)

Average StDev

Figure 5-7 Average transfer times and standard deviations for larger payloads

113

The total time shown in the graphs is the accumulation of three components:

publish, subscribe and transfer times. The WFS-Server reads the file into memory and

gives to the publisher class; this operation is very fast and negligible in comparison with

total time showed in the graph. The publish time is the amount of time it takes to publish

the in-memory file bytes. Second component is the time spent on the client side to receive

the published bytes and create a complete in-memory representation of the XML object.

Third component is the time spent to transfer the file bytes from server to the client.

As can be seen from the graphs the timings show an expected near-linear increase,

since the actual size of the published data increases linearly.

5.4.1.2 Streaming WFS Performance with Fast Infoset

Integration

One of the major binary XML frameworks under development today is SUN’s

ASN.1 based Fast Infoset project [134]. We used Fast Infoset to test the scenario

described in Figure 5-6. In addition to the network timing described above we measure

encoding and decoding costs required to convert XML documents to Fast Infoset

documents and vice versa.

Table 5-5, Table 5-5 and Figure 5-6 and Figure 5-6show the average timings and

standard deviations for Fast Infoset encoding, decoding and network transfer times.

Table 5-5 - Average timings for Fast Infoset processing and network transfer times, small files

Number
Of

Features

Average Timings Standard Deviation

Encoding Network Decoding Total Encode Network Dec oding Total

10 3.00 6.00 3.00 11.00 2.65 1.17 1.64 4.12

20 2.00 7.00 3.15 12.15 2.36 1.65 1.79 4.32

30 2.60 6.60 3.70 12.90 0.60 0.99 0.98 1.37

114

40 2.90 7.10 4.25 14.25 0.85 1.48 0.91 1.86

50 4.30 7.35 5.00 16.65 1.08 1.90 0.79 1.63

60 5.05 7.65 5.10 17.80 1.57 1.18 0.31 1.96

70 5.05 7.75 5.70 18.50 1.57 0.79 1.13 2.09

80 6.00 8.65 5.45 20.10 0.65 1.50 0.51 1.83

90 6.85 8.40 6.10 21.35 0.67 0.60 0.55 0.99

100 7.20 9.20 6.35 22.75 1.06 1.85 0.67 1.92

Streaming Data Transfer
 with Fast Infoset Integration

0

5

10

15

20

25

10 20 30 40 50 60 70 80 90 100

Number Of Features

T
im

e
(m

s)

Encoding Network Time Decoding Total

Figure 5-8 - Streaming WFS performance with Fast Infoset integration, small files

For small data sizes the network time is the dominant factor for the total time, while

the encoding and the decoding processes take similar times and smaller than the transfer

time.

Table 5-6 - Average timings for Fast Infoset processing and network transfer times, large files

Number
Of

Features

Average Timings Standard Deviation

Encoding Network Decoding Total Encode Network Dec oding Total

500 23.68 9.98 20.58 54.24 3.98 1.62 2.93 6.16

1,000 43.56 13.48 38.48 95.52 1.51 1.87 2.87 3.50

2,000 89.26 18.96 75.40 183.62 2.59 2.20 1.47 4.10

3,000 135.94 24.54 108.76 269.24 2.85 7.45 2.38 7.77

4,000 182.34 33.18 149.02 364.54 6.26 10.07 10.68 15.03

5,000 229.24 36.32 178.80 444.36 5.67 5.68 8.04 10.32

115

6,000 318.52 47.32 217.00 582.84 9.13 9.09 11.20 14.79

7,000 348.54 50.36 272.70 671.60 9.13 9.09 11.20 14.79

8,000 394.34 54.32 308.14 756.80 14.08 6.74 8.08 15.68

9,000 445.76 60.32 345.40 851.48 16.00 12.75 6.07 20.15

10,000 491.34 66.50 378.16 936.00 13.46 12.24 2.59 17.55

Streaming Data Transfer

 with Fast Infoset Integration

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1,000.00

500 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

Number Of Features

T
im

e
(m

s)

Encoding Network Time Decoding Total

Figure 5-9 - Streaming WFS performance with Fast Infoset integration, large files

Figure 5-6 shows that as the data size grow the Fast Infoset encoding and decoding

times also grow significantly larger than the transfer time which displays a small

increase. The total time shows near-linear characteristic because of the linear payload

size increase. The performance in this case is dominated for all data sizes by encoding the

Fast Infoset documents on the server side. The network time does not have a major

contribution to the total time since the actual network path is almost zero.

5.4.1.3 Streaming WFS Performance with BNUX Integration

The second binary XML framework we tested is BNUX [141], an extension of the

NUX – An XML processing framework designed especially to be used in high-

116

throughput XML messaging middleware such as large-scale Peer-to-Peer infrastructures,

message queues, publish-subscribe and matchmaking systems etc. [142].

Table 5-5 and Figure 5-6 show the test results for small and large data payloads.

Table 5-7 - Average timings for BNUX processing and network transfer times, small files

Number
Of

Features

Average Timings Standard Deviation

Encoding Network Decoding Total Encode Network Dec oding Total

10 1.35 3.00 1.75 6.00 1.23 0.50 0.64 1.40
20 1.00 4.55 1.50 6.10 1.28 0.50 0.99 1.76
30 1.40 4.80 2.00 8.20 1.05 0.52 1.30 1.70
40 2.05 5.35 2.25 9.65 1.32 0.59 0.79 1.69
50 3.05 5.70 2.60 11.35 1.36 0.57 0.82 1.31
60 3.55 5.80 2.95 12.30 0.60 0.62 0.69 1.08
70 4.20 6.15 3.35 13.70 0.52 0.37 0.81 0.86
80 4.75 6.50 3.65 14.90 0.79 0.95 1.09 1.52
90 5.75 6.85 3.70 16.30 0.55 0.67 1.13 1.08

100 6.75 7.35 3.40 17.50 1.12 0.59 1.85 2.50

Streaming Data Transfer
 with Fast Infoset Integration

0

2

4

6

8

10

12

14

16

18

20

10 20 30 40 50 60 70 80 90 100

Number Of Features

T
im

e
(m

s)

Encoding Netw ork Time Decoding Total

Figure 5-10 - Streaming WFS performance with BNUX integration for small payloads

As in the Fast Infoset case the dominant contributor to the total time for small data

sizes is the network transfer time, while encoding and decoding steps take less time.

117

Table 5-8 - Average timings for BNUX processing and network transfer times, large files

Number
Of

Features

Average Timings Standard Deviation

Encoding Network Decoding Total Encode Network Dec oding Total

500 27.14 9.98 11.06 48.18 6.60 2.09 7.88 14.80

1,000 49.20 13.48 16.36 79.04 2.35 1.40 6.51 6.69

2,000 100.74 18.96 34.30 154.00 7.66 2.36 15.13 18.84

3,000 152.40 24.54 55.50 232.44 3.99 8.70 26.88 29.27

4,000 199.22 33.18 70.52 302.92 8.77 17.68 24.71 29.21

5,000 250.26 36.32 122.64 409.22 6.18 10.87 37.96 47.21

6,000 296.46 47.32 184.78 528.56 8.80 26.46 66.31 68.02

7,000 347.84 50.36 156.74 554.94 20.70 9.04 60.74 68.23

8,000 395.62 54.32 308.06 758.00 9.53 58.39 86.41 75.19

9,000 446.12 60.32 381.70 888.14 12.03 95.56 92.85 134.24

10,000 501.74 66.50 370.82 939.06 18.08 47.78 84.70 86.64

Streaming Data Transfer

 with Fast Infoset Integration

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1,000.00

500 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

Number Of Features

T
im

e
(m

s)

Encoding Network Time Decoding Total

Figure 5-11 - Streaming WFS performance with BNUX integration for larger payloads

Figure 5-6 shows that the behavior of BNUX framework is similar to Fast Infoset

for larger data sizes too. Here the encoding step is longer than encoding and the network

transfer time. The total time is also very similar to Fast Infoset case.

118

5.4.1.4 Performance Comparison of Three Encodings

 Here we compare the three test cases outlined above. The first case is the pure

XML transport the second case showed the results with Fast Infoset integration, and the

third case is the BNUX integration case.

NB Transfer Time Comparison
TCP

NB Server @ Bloomington

0

5

10

15

20

25

10 20 30 40 50 60 70 80 90 100

Number Of Features

T
im

e
(m

s)

XML BNUX FI

Figure 5-12 - Total processing times for different XML encodings, small files

NB Transfer Time Comparison
TCP

NB Server @ Bloomington

0

100

200

300

400

500

600

700

800

900

1000

500 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

Number Of Features

T
im

e
(m

s)

XML BNUX FI

Figure 5-13 - Total processing times for different XML encodings, large files

119

The graphs show that because of the expensive binary encoding and decoding

processes the two binary XML frameworks add significant overhead to the system, hence

the textual XML transfer performs much better. This is also due to the fact that the tests

are executed in the local network which causes the transfer times to be minimal.

5.4.1.5 Fast Infoset, BNUX comparison

Figure 5-6 and Figure 5-6 show the performance comparison of two binary XML

frameworks in first test case for different data sizes. The graphs show that BNUX have

demonstrated better performance for the smaller files while Fast Infoset has superior

performance for the larger data sizes. The difference becomes more obvious after the

number of features in the file are larger than 1000.

BNUX - Fast Infoset Comparison
NB Server @ Bloomington

0

1

2

3

4

5

6

7

8

10 20 30 40 50 60 70 80 90 100

Number Of Features

T
im

e
(m

s)

BNUX-Encoding BNUX-Decoding FI-Encoding FI-Decoding

Figure 5-14 - Performance comparison of Fast Infoset and BNUX frameworks, small files

120

BNUX - Fast Infoset Comparison
NB Server @ Bloomington

0

100

200

300

400

500

600

500 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

Number Of Features

T
im

e
(m

s)

BNUX-Encoding BNUX-Decoding FI-Encoding FI-Decoding

Figure 5-15 - Performance comparison of Fast Infoset and BNUX frameworks, large files

5.4.2 WAN Testing I

In this test configuration the WFS server and the WFS Client were run on gridfarm

servers, while the NaradaBrokering Server run on complexity.ucs.indiana.edu at

Indianapolis, Indiana.

Figure 5-16 - Test Configuration for the second case; NaradaBrokering Server is in Indianapolis.

121

5.4.2.1 Streaming WFS Performance with Textual XML

Transfer

Table 5-5, Figure 5-6 and Figure 5-6 show the average network time spent for

transferring textual XML documents between WFS-Server, NaradaBrokering Server and

the Client, and the standard deviations.

Table 5-9 – Average XML transfer times

Number
of

Features

Average
Transfer

Time (ms)

Standard
Deviation

10 8.65 2.06

20 12.65 1.84

30 12.85 1.69

40 13.05 1.79

50 15.00 1.00

60 15.25 0.91

70 17.10 1.41

80 18.85 1.95

90 19.05 1.32

100 20.00 1.00

Number
of

Features

Average
Transfer

Time (ms)

Standard
Deviation

500 47.20 13.89

1,000 94.40 25.81
2,000 197.65 31.58
3,000 300.35 25.46
4,000 381.55 28.62
5,000 473.10 26.83
6,000 546.35 22.94
7,000 671.70 41.14
8,000 747.60 39.44
9,000 793.15 44.10
10,000 857.85 46.32

122

NB Transfer Times
TCP / XML

NB Server @ Indianapolis

0

2

4

6

8

10

12

14

16

18

20

10 20 30 40 50 60 70 80 90 100

Number Of Features

T
im

e
 (
m

s)

Average StDev

Figure 5-17 - Streaming WFS timings for XML data exchange, small files

Because the distance between publisher, subscriber and the broker server increased

from the first test case where all of the components were run in the local network, the

average transfer time increases to between 8ms and 20 ms whereas in the previous test

case it was between 3ms and 7.5ms.

We see the network distance effect more clearly in Figure 5-6; here the transfer

times of the larger data files doubles in comparison to the local network test case.

123

NB Transfer Times
TCP / XML

NB Server @ Indianapolis

0

100

200

300

400

500

600

700

800

900

500 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

Number Of Features

Ti
m

e
(m

s)

Average StDev

Figure 5-18 - Streaming WFS timings for XML data exchange, large files

5.4.2.2 Streaming WFS Performance with Fast Infoset

Integration

Table 5-5 and Figure 5-6 show the system performance with Fast Infoset encoded

document transfer.

Table 5-10 - Average timings for Fast Infoset processing and network transfer times, small files

Number
Of

Features

Average Timings Standard Deviation

Encoding Network Decoding Total Encode Network Dec oding Total

10 4.85 9.75 3.95 18.55 2.28 1.02 1.15 2.21
20 1.95 12.21 3.45 17.58 2.68 2.51 1.73 4.96
30 2.50 12.05 3.40 17.95 0.51 0.89 0.50 1.05
40 2.60 13.40 4.75 20.75 0.50 1.64 1.41 1.80
50 4.45 14.00 5.20 23.65 0.60 1.72 0.83 1.53
60 6.20 14.10 5.50 25.80 3.02 0.79 0.76 2.91
70 4.70 17.25 5.85 27.80 0.66 2.24 1.18 3.00
80 5.70 16.35 5.75 27.80 0.80 1.23 1.02 1.40
90 6.25 18.15 6.05 30.45 0.72 2.32 0.51 2.06

100 7.25 17.50 6.75 31.50 0.85 1.24 0.85 1.70

124

Streaming Data Transfer
 with Fast Infoset Integration

0

5

10

15

20

25

30

35

10 20 30 40 50 60 70 80 90 100

Number Of Features

T
im

e
(m

s)

Encoding Netw ork Time Decoding Total

Figure 5-19 - Streaming WFS performance with Fast Infoset integration, small files

As the Figure 5-6 shows the use of Fast Infoset encoding introduces a 10ms to 15ms

overhead and since the data transfer time is relatively small this causes the total transfer

time to be larger than the textual XML transfer. However for the small files the encoding

and decoding times are always smaller than the network time.

Table 5-11 - Average timings for Fast Infoset processing and network transfer times, large files

Number
Of

Features

Average Timings Standard Deviation

Encoding Network Decoding Total Encode Network Dec oding Total

500 25.35 29.50 21.35 76.20 2.70 1.91 2.98 4.26
1,000 50.45 41.00 40.55 132.00 2.09 3.60 1.15 3.61
2,000 102.90 83.50 77.35 263.75 4.41 21.89 1.69 20.24
3,000 214.90 114.70 116.95 446.55 54.70 26.30 11.17 61.90
4,000 215.30 136.80 160.30 512.40 34.02 24.97 6.64 50.23
5,000 264.75 176.90 192.55 634.20 11.68 35.29 4.77 37.64
6,000 314.10 209.75 227.15 751.00 12.91 32.22 6.05 31.19
7,000 399.45 238.70 288.60 926.75 91.21 33.07 17.63 104.96
8,000 476.90 297.20 349.65 1,123.75 133.04 39.53 25.64 121.70
9,000 554.40 373.85 371.10 1,299.35 116.18 35.94 18.53 123.78

10,000 548.20 384.50 401.75 1,334.45 39.07 32.05 19.55 47.18

125

Streaming Data Transfer
 with Fast Infoset Integration

0

200

400

600

800

1,000

1,200

1,400

500 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

Number Of Features

T
im

e
(m

s)

Encoding Network Time Decoding Total

Figure 5-20 - Streaming WFS performance with Fast Infoset integration, larger files

Figure 5-6 shows an interesting behavior of Fast Infoset framework, where for large

files the encoding takes more time than decoding. Overall the transfer time is almost

always smaller than the total encoding and decoding overhead and it is significantly

smaller than the textual XML transfer time. However because of the encoding and

decoding overhead contributions the total performance is worse than the textual XML

transport.

5.4.2.3 Streaming WFS Performance with BNUX Integration

Table 5-5, Table 5-5, Figure 5-6 and Figure 5-6 show the system performance with

BNUX encoded document transfer.

Table 5-12 - Average timings for BNUX processing and network transfer times, small files

Number
Of

Features

Average Timings Standard Deviation

Encoding Network Decoding Total Encode Network Dec oding Total

10 2.70 5.30 1.65 9.65 1.49 0.47 1.04 2.62

126

20 1.40 8.20 1.15 10.75 2.06 0.89 0.67 2.45

30 1.65 9.45 1.55 12.65 1.35 0.83 0.76 1.73

40 2.35 10.35 2.15 14.85 0.49 1.53 0.93 1.95

50 3.70 10.70 2.80 17.20 1.13 0.80 0.89 1.15

60 4.40 11.45 2.75 18.60 1.39 0.51 1.12 1.90

70 4.60 13.60 3.45 21.65 0.94 0.75 0.94 1.35

80 6.15 13.50 4.05 23.70 0.75 1.00 1.61 2.15

90 6.85 14.40 3.55 24.80 0.59 0.82 1.05 1.51

100 7.45 14.55 3.60 25.60 0.60 1.36 1.43 1.64

Streaming Data Transfer
 with BNUX Integration

0

5

10

15

20

25

30

10 20 30 40 50 60 70 80 90 100

Number Of Features

T
im

e
(m

s)

Encoding Netw ork Time Decoding Total

Figure 5-21 - Streaming WFS performance with BNUX integration, small files

In this test the performance of the BNUX integration is similar to the previous test.

Encoding and decoding overheads add to the total time which causes the total time to be

longer than the textual XML transfer.

Table 5-13 - Average timings for BNUX processing and network transfer times, large files

Number
Of

Features

Average Timings Standard Deviation

Encoding Network Decoding Total Encode Network Dec oding Total

500 29.05 20.20 12.35 61.60 5.02 1.24 3.17 6.11
1,000 52.50 30.85 21.75 105.10 1.47 1.23 8.53 9.10

127

2,000 107.05 59.55 47.40 214.00 5.06 18.67 17.46 24.49

3,000 162.85 85.80 77.75 326.40 4.53 3.90 49.36 49.98
4,000 216.25 107.85 89.10 413.20 12.34 13.10 27.12 29.09
5,000 265.00 126.70 127.75 519.45 4.14 5.28 24.35 28.54

6,000 321.30 159.90 191.90 673.10 14.43 24.58 72.29 78.77
7,000 365.55 185.30 204.30 755.15 21.22 29.40 57.54 72.60

8,000 392.00 293.25 337.90 1,023.15 13.43 67.53 114.85 99.41
9,000 436.65 383.35 415.95 1,235.95 19.01 92.64 144.59 196.75

10,000 488.70 463.15 385.00 1,336.85 9.09 59.41 100.98 106.97

Streaming Data Transfer
 with BNUX Integration

0

200

400

600

800

1,000

1,200

1,400

500 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

Number Of Features

T
im

e
(m

s)

Encoding Netw ork Time Decoding Total

Figure 5-22 - Streaming WFS performance with BNUX integration, large files

Figure 5-6 shows that the two binary XML frameworks demonstrate similar

performances under same conditions. The BNUX document transfer times do not show

major increase between Bloomington and Indianapolis servers and the encoding time

dominates the total time.

5.4.2.4 Performance Comparison of Three Encodings

 Figure 5-6 and Figure 5-6 compare the system performance for three document

encodings in this test case, where we run the NaradaBrokering server in Indianapolis.

128

NB Transfer Time Comparison
TCP

NB Server @ Indianapolis

0

5

10

15

20

25

30

35

10 20 30 40 50 60 70 80 90 100

Number Of Features

T
im

e
(m

s)

XML BNUX FI

Figure 5-23 - Total processing times for different XML encodings, small files

NB Transfer Time Comparison

TCP
NB Server @ Indianapolis

0

200

400

600

800

1,000

1,200

1,400

500 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

Number Of Features

T
im

e
(m

s)

XML BNUX FI

Figure 5-24 - Total processing times for different XML encodings, large files

For the smaller data sizes we see that although the XML and BNUX transfer times

are closer in the first steps the difference grows for the rest of the files and overall the

textual XML transfer performance is better.

129

For the second group of the test files the BNUX and XML file transfer times are

very similar up to 4000 features, however again in this case the binary XML conversion

overheads cause the integration of these frameworks to increase the total time.

5.4.3 WAN Testing II

In this test configuration the WFS server and the WFS Client run on gridfarm

servers, while the NaradaBrokering Server run on one of the servers provided SIO

(Scripps Institution of Oceanography) at La Jolla, California.

Figure 5-25 - Test Configuration for the third case; NaradaBrokering Server is run in La Jolla,

California.

5.4.3.1 Streaming WFS Performance with Textual XML

Transfer

Figure 5-6 and Figure 5-6 shows the total network time spent for transferring

textual XML documents between WFS-Server, NaradaBrokering Server and the Client.

130

As the following table and the graphs show that the effect of the distance between

the NaradaBrokering server and the clients is significant. The textual XML transfer times

increase by tenfold for both the small and large file transfers.

Table 5-14 - Average XML transfer times, small files

Number
of

Features

Average
Transfer

Time (ms)

Standard
Deviation

10 183.30 0.66

20 186.30 2.13

30 245.85 1.69

40 246.65 1.23

50 252.55 12.70

60 257.70 18.30

70 308.25 1.29

80 368.25 2.49

90 369.45 0.94

100 374.95 12.82

Number
of

Features

Average
Transfer

Time (ms)

Standard
Deviation

500 957.60 167.01

1,000 2,204.70 103.23

2,000 3,787.85 47.07

3,000 5,554.10 40.53

4,000 7,291.05 43.72

5,000 9,066.45 39.19

6,000 10,678.10 58.11

7,000 12,487.70 153.52

8,000 14,317.35 167.96

9,000 15,940.15 238.70

10,000 17,572.35 181.22

NB Transfer Times
TCP / XML

NB Server @ La Jolla, CA

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

10 20 30 40 50 60 70 80 90 100

Number Of Features

T
im

e
(m

s)

XML Transfer StDev

Figure 5-26 - Streaming WFS timings for XML data exchange, small files

131

NB Transfer Times
TCP / XML

NB Server @ La Jolla, CA

0.00

2,000.00

4,000.00

6,000.00

8,000.00

10,000.00

12,000.00

14,000.00

16,000.00

18,000.00

500 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

Number Of Features

T
im

e
(m

s)

XML Transfer StDev

Figure 5-27 - Streaming WFS timings for XML data exchange, large files

5.4.3.2 Streaming WFS Performance with Fast Infoset

Integration

As the Table 5-5, Table 5-5 and Figure 5-6 and Figure 5-6 show that the Fast

Infoset integration significantly reduces the total transfer time.

Table 5-15 - Average timings for Fast Infoset processing and network transfer times, small files

Number
Of

Features

Average Timings Standard Deviation

Encoding Network Decoding Total Encode Network Dec oding Total

10 8 128 5 141 7 3 2 10

20 3 187 3 193 2 1 1 3
30 3 188 3 194 0 2 0 2

40 3 188 5 195 1 1 1 2
50 4 244 5 253 1 13 1 13

60 5 251 5 261 1 13 1 13
70 5 251 5 262 1 13 0 13
80 6 248 6 260 1 0 1 1

90 7 248 6 261 1 1 0 1
100 23 221 21 266 15 19 15 48

132

Streaming Data Transfer
 with Fast Infoset Integration

0

50

100

150

200

250

300

10 20 30 40 50 60 70 80 90 100

Number Of Feat ures

Encoding Network Time Decoding Total

Figure 5-28 - Streaming WFS performance with Fast Infoset integration, small files

The total network time for small files shows that we gain significantly by using Fast

Infoset encoding. This is due to the fact that the binary encoding and decoding overheads

are ignorable when compared to the actual data transfer times. And since the size of the

data is reduced because of the binary conversion the total transfer time for small files

changes between 141-266ms whereas it was between 183-374ms in textual XML

transfer. The average gain introduced by Fast Infoset integration is about 50ms.

Table 5-16 - Average timings for Fast Infoset processing and network transfer times, large files

Number
Of

Features

Average Timings Standard Deviation

Encoding Network Decoding Total Encode Network Dec oding Total

500 35 317 31 383 7 2 10 17

1,000 52 477 40 568 5 68 1 70

2,000 103 955 78 1,136 8 54 2 56

3,000 152 1,390 112 1,653 5 66 4 65

4,000 209 1,832 150 2,191 8 68 3 72

5,000 261 2,380 190 2,831 10 171 7 176

6,000 311 2,698 224 3,234 24 68 17 74

7,000 370 3,346 268 3,984 21 52 8 53

8,000 419 3,794 322 4,535 16 39 21 46

133

9,000 484 4,206 363 5,053 31 21 20 38

10,000 536 4,573 392 5,501 28 47 21 45

Streaming Data Transfer
 with Fast Infoset Integration

0

1,000

2,000

3,000

4,000

5,000

6,000

500 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

Number Of Features

T
im

e
(m

s)

Encoding Network Time Decoding Total

Figure 5-29 - Streaming WFS performance with Fast Infoset integration, large files

Figure 5-6shows that the average data transfer time for large files is much smaller

than the textual XML transfer times. The encoding and decoding costs stay at a low level

compared to the network time especially for the large data sizes.

The average network time changes between 383ms-5501ms, whereas it was between

957ms and 17000ms in textual XML case. The average time gain for the whole test is

around 6600ms.

5.4.3.3 Streaming WFS Performance with BNUX Integration

Following tables and the figures show that the results of BNUX binary encoding

integration are very similar to the Fast Infoset case discussed above. Overall the reduction

obtained by the binary conversion of the textual XML results in significant transfer time

gains.

134

Table 5-17 - Average timings for BNUX processing and network transfer times, small files

Number
Of

Features

Average Timings Standard Deviation

Encoding Network Decoding Total Encode Network Dec oding Total

10 1.90 129.00 2.65 133.55 7.73 14.44 1.69 20.57

20 1.00 185.85 1.35 186.85 1.39 1.35 1.14 1.81

30 0.70 189.40 1.45 191.55 1.26 13.17 0.51 12.97

40 1.65 195.80 2.45 199.90 1.31 28.79 1.67 30.85

50 2.45 246.60 2.50 251.55 1.15 0.68 0.61 0.94

60 2.75 249.65 3.20 255.60 0.64 13.04 1.06 13.09

70 3.60 261.85 3.25 268.70 1.10 32.71 1.16 32.43

80 4.25 254.05 3.25 261.55 0.72 18.47 0.91 18.33

90 5.10 260.35 3.60 269.05 0.91 24.45 0.88 24.24

100 23.00 251.65 9.75 284.40 30.89 43.44 11.45 77.63

Streaming Data Transfer
 with BNUX Integration

0

50

100

150

200

250

300

10 20 30 40 50 60 70 80 90 100

Number Of Features

Encoding Network Time Decoding Total

Figure 5-30 - Streaming WFS performance with BNUX integration, small files

This figure shows that the overhead caused by the encoding and decoding to and

from the binary format are ignorable, the total time is almost always equal to the transfer

time. So the use of BNUX framework helps reduce the data size and transfer times. The

average gain for the whole test is 49ms.

135

Table 5-18 - Average timings for BNUX processing and network transfer times, small files

Number
Of

Features

Average Timings Standard Deviation

Encoding Network Decoding Total Encode Network Dec oding Total

500 24.80 315.00 10.76 350.56 3.92 11.92 6.53 15.30

1,000 47.86 595.40 17.12 660.38 2.18 70.90 6.34 71.23

2,000 95.14 1,065.18 36.04 1,196.36 3.14 102.97 14.64 106.92

3,000 146.10 1,612.98 60.00 1,819.08 3.70 111.07 27.00 109.84

4,000 189.88 1,960.34 74.66 2,224.88 8.20 54.72 25.14 63.90

5,000 241.16 2,516.32 123.48 2,880.96 8.80 138.06 40.97 137.93

6,000 284.06 3,349.54 184.22 3,817.82 6.07 142.25 73.76 150.70

7,000 328.05 3,509.85 168.65 4,006.55 7.47 27.91 106.49 112.37

8,000 381.30 4,137.25 330.45 4,849.00 18.45 94.50 110.76 117.93

9,000 418.80 4,792.15 402.40 5,613.35 7.80 89.99 124.46 158.84

10,000 480.95 5,183.70 532.85 6,197.50 26.75 63.82 161.36 203.32

Streaming Data Transfer
 with BNUX Integration

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

500 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

Number Of Features

T
im

e
(m

s)

Encoding Network Time Decoding Total

Figure 5-31 - Streaming WFS performance with BNUX integration, large files

The test results for larger data file transfer with BNUX encoding depicted in figure

31 shows the overall system performance gain in comparison to the textual XML transfer.

Since the encoding and decoding overheads are ignorable, the performance is determined

by the network time. The average performance improvement from the textual XML

transfer is 6879ms.

136

5.4.3.4 Performance Comparison of Three Encodings

Now we compare the results of three test cases discussed above. As it can be seen

from Figure 5-6, the XML transfer takes more time for most of the files, and almost equal

time for 3 files. The binary encodings help reduce the data transfer time at a lower level.

NB Transfer Time Comparison
TCP

NB Server @ La Jolla, CA

0

50

100

150

200

250

300

350

400

10 20 30 40 50 60 70 80 90 100

Number Of Features

T
im

e
 (m

s)

XML BNUX FI

Figure 5-32 - Total processing times for different XML encodings, small files

NB Transfer Time Comparison
TCP

NB Server @ La Jolla, CA

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

500 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

Number Of Features

T
im

e
(m

s)

XML BNUX FI

Figure 5-33 - Total processing times for different XML encodings, large files

137

The real performance improvement is seen in Figure 5-33; while the XML transfer

times follow a linear steep increase, because of the linear increase in the payload sizes,

the binary encoding keeps the increase rate at a lower level. So for the largest test file,

which contains 10000 features Web Feature Service with binary XML integration

requires around 6000ms, whereas the same number of features with textual XML

encoding takes about 18000ms.

5.5 Summary

In this chapter we have discussed a scenario for testing the performance of the most

important component in our GIS Data Grid architecture, the Streaming Web Feature

Service. We show the performance of this service with and without using binary XML

frameworks. The results show that there is not much gain with using these frameworks

for the local network, and probably for short network distances. However the

performance gain for the long distance data transfer is significant, over 60% with both

BNUX and Fast Infoset integration cases. The results also imply that although the Binary

XML frameworks can be used for better transfer times and bandwidth they should only

be used when there is a performance gain. To make this decision a decision module might

be implemented. This module can be designed based on Case Based Reasoning approach

which can pick up best available binary encoding for similar queries and network

distances that was recorded in the past.

138

Chapter 6

Real-Time GIS Data Grid

6.1 Introduction

Recent research has discussed that the sensors are changing the way we acquire data

about various entities. Recent advancements in sensor technologies such as micro-

circuitry, nano-technology and low-power electronics allowed sensors to be deployed in a

wide variety of environments [21, 22, 143-146]. The trend in this field shows us that in

the near future we will see thousands of sensor nodes being deployed either individually

or as part of sensor networks in a large variety of application domains. Environmental

monitoring, air pollution and water quality measurements, detection of the seismic events

and understanding the long-term motions of the Earth crust are only a few areas where

extent of the deployment of sensor networks can easily be seen. Extensive use of sensing

devices and deployment of the networks of sensors that can communicate with each other

to achieve a larger sensing task will fundamentally change information gathering and

processing [147].

139

Our work on developing a common Grid infrastructure for Geographic Information

Systems has led us to the conclusion that this new type of data source is capable of

producing very large amounts of observational data which potentially may help us obtain

detailed knowledge about the environment we live in. Although the most common type of

geographic data are kept in various types of data stores, the real-time sensor

measurements are becoming the dominant type of data sources with the capacity to

produce tremendous amount of measurements, which might be more than the traditional

systems can handle in normal operation. For instance Southern California Integrated GPS

Network (SCIGN) [148] has deployed 250 continuously-operating GPS stations in

Southern California whereas several hundred non-real time stations are operating

elsewhere in the United States. The GPS Earth Observation Network System or

GEONET in Japan consists of an array of 1200 GPS stations that cover the entire country

with an average spacing of about 20 km [149]. These networks are capable of producing

terabytes of measurements per year.

Table 6-1 shows approximate amount of data produced by the Southern California

Integrated GPS Network (SCIGN) real-time GPS stations. The observations obtained

from a proxy server are encoded in a binary format called RYO. The table shows the

increase in size for different encodings of the same observations.

140

Table 6-1 –Approximate amount of data produced by SCIGN GPS Networks

 Message Format
 Time RYO ASCII GML

SDCRTN GPS Network
(9 Stations)

1 second 1.5KB 4.03KB 48.7KB

1 hour 5.31MB 14.18MB 171.31MB

1 day 127.44MB 340.38MB 4.01GB

1 month 3.8GB 9.97GB 123.3GB

1 year 45.8GB 119.67GB 1.41TB

Entire SCIGN Network
(250 stations)

1year 1.23TB 16.18TB 160TB

However rapid proliferation of sensors presents unique challenges different than the

traditional computer network problems. Several studies have discussed the technological

aspects of the challenges with the sensor devices, such as power consumption, wireless

communication problems, autonomous operation, adaptability to the environmental

conditions, load balancing etc [150] [151] [21]. In this chapter we describe a Service

Oriented Architecture termed SensorGrid to support real-time information gathering and

processing from sensors. The architecture supports real-time integration of sensors with

scientific applications such as simulation, visualization or data mining software.

Scientific applications that require processing of huge data sets are increasing in

number with the evolution of computing resources, network bandwidth, and storage

capabilities etc. At the same time some of the applications are being designed to run on

real-time data to provide near-real time results; such applications are gaining ground in

systems like Crisis Management [152] or Early Warning Systems [153] [154] because

they allow authorities to take action on time. Earthquake data assimilation tools are good

examples of this group since they use data from Seismic or GPS sensors. However, most

141

of these tools currently consume data from repositories and they do not have access to

real-time data due to several reasons.

6.2 Real-Time Data Grid Components

In this chapter we present a common Grid Infrastructure for coupling real-time data

sources such as sensors to distributed science tools such as distributed data analysis or

simulation applications. The Grid is built around streams created and consumed by filters

and managed by a powerful Grid messaging substrate.

This architecture consists of three major components in addition to the actual sensor

nodes; individual filters that process the real-time data streams, information services

which provide the metadata about the filters or filter chains, and Grid messaging system,

which provides supports in areas like fault tolerance, notification, recovery etc. The

filters are run in specific order to achieve particular processing goals. This corresponds to

different workflow [155] scenarios in different Grid domains. The filters are exposed as

Web Services to allow remote composition of filter chains which also enables running

different workflow scenarios. Although we did not study workflows during our research,

we note that Grid workflow engines such as Taverna [156] can be used to create various

workflow scenarios with our filter services.

Overall the Sensor Grid paradigm is similar for different scientific domains, the

sensors, filter services, the metadata registry and the Grid messaging support make up the

backbone of the system.

Here we turn our attention to the major parts of the system;

142

6.2.1 Filters

Filters in SensorGrid context are data processing applications, mostly operating in

real-time. Similar to filters in electronics which accepts processes and outputs certain

types of signals, a real-time software filter accepts transforms and presents messages.

Depending on the task they are designed for filters may be small applications such as

format converters or very complex applications like simulation software. They may be

expected to run in real-time by immediately processing and presenting the results or in

near-real time by accumulating certain amount of data and executing the processing

afterwards.

Figure 6-1 – Simple Filter concept includes a signal generator unit, actual data processing

filter unit and the output signal.

The filters in our real-time data Grid architecture have three major parts

corresponding to the three components depicted in Figure 1. The first component is the

data input unit which is responsible for obtaining the data from the sources. In real-time

data Grid the data sources are sensors, or proxy servers which disseminate the real-time

sensor measurements. The input unit must have the capability to access and present the

data to the actual filter. The second component is the actual data processing unit. And the

last component is a data output unit. Depending on the type of the Grid or client

applications, the output unit may be implemented to support various data transfer

protocols.

Input
Signal

Output
Signal

Filter

143

While designing real-time applications one obvious principle to remember is the

importance of keeping the data flow from sources to destinations alive. Data processing

in general requires multiple steps. For instance in a most simplistic case three steps would

be required: accessing the data, converting them into application specific formats, and

executing the actual processing. However in real world applications many more steps

might be required to create a data processing flow. One must remember that any kind of

interruption at some step of the flow will disrupt the entire process and possibly cause

major breakdown because in the real-time systems the data are likely to be streamed

continuously. For this reason it is wise to break down the data processing applications

into as many small filters as possible and allow them to be accessed and controlled

through standard interfaces. This approach helps creating robust real-time data flows

because it allows distribution of the processing components and in turn integrating

failsafe measures. For instance backup services could be used to replace any failed

services thus allowing keeping the flow alive.

We adopt Web Service approach to create standard control interfaces for the filters.

Every filter in the system implements the same Web Service interface. The Filter Web

Service interface has capabilities like to start, stop and resume the filter operations. It

should also provide a unique identifier for each filter, which can be useful for creating

distributed chains. Another important feature of this service is to provide metadata

descriptions of the filters.

6.2.2 Filter Metadata

Creating distributed systems require successful orchestration of multiple remote

resources. To minimize human interference in this orchestration is also important for fast

144

an accurate operation. However to do this the resources are need to be well defined.

There must be a standard way for resources to communicate for successful integration.

Web Services present us a useful way for defining the service capabilities so that

coupling the resources can be done automatically. In the filters case we also need

additional metadata about each filter for creating filter chains. The metadata documents

should contain unique properties of the filters such as its id, input –output requirements,

dependencies and a short description of the processing it is responsible for.

In SensorGrid the filters are essentially deployed as Web Services and in most cases

run in a workflow as part of complex processes. Each filter is designed to execute a

particular task, which means it accepts and produces certain type of messages. This

introduces dependencies between the filters. Defining these dependencies in a filter

specific metadata document is useful for checking if these dependencies are satisfied at

the time of the deployment. This way the users will see which other filters must be

deployed as well.

Figure 6-2 shows the metadata schema for the SensorGrid filters. It should be noted

that the OGC SensorML [75] specification provides schemas for describing the sensor

metadata and it could have been used here. However because of the complexity of the

SensorML schemas and our System’s requirement for providing additional schema to

describe filter chains we have decided to create a simple schema instead.

145

Figure 6-2 - XML Schema for the Filter Metadata

6.2.3 Filter Chains

As described above complex data processing tasks require multiple steps. In our

architecture we use distributed filters for realizing such complex tasks. The standard Web

Service interfaces for the filters allow remote creation and management of filter chains.

We also provide base classes for creating new filters and filter Web Services. The filters

146

are deployed successively around a publish-subscribe messaging system which federates

the distributed resources and allows hierarchical operation of the filters.

Depending on the type of the processing the filters may be chained in parallel or

serial modes. If the input data can be processed by different filters at the same time and

the results of them are merged after these independent processes are complete then the

parallel operation is appropriate.

Figure 6-3 - Parallel operation of the filters

Figure 5-6 show the output of the Filter A is shared as input by Filters B and C,

while the Filter D merges the outputs from both and does the final processing.

Figure 6-4 - Serial operation of the filters

However in the real-world applications serial operations are dominant. A filter

requires output from another as input, which also provides its output to the successive

one as input. Figure 5-6 shows three filters processing sensor messages in serial

connection.

In the larger picture each domain specific Grid would have specific filter chains. It

is desirable for the Grid services to have access to the filter-chains at a given time for

147

different reasons. For instance at the time of any server failures, it may be expected from

the SensorGrid to restart all the filter services in some chains. To be able to do this we

need to keep metadata about the running, or potentially useful chains. For this reason we

have developed an XML Schema for describing filter chains.

Figure 6-5 - XML Schema for the Filter Chains

Figure 5-6 shows elements of XML Schema document for describing the filter

chains. This Schema imports the filter Schema described above. Each filter chain has

metadata elements like simple description, name and ID. A chain is composed of multiple

Links. Each link refers to a filter implementation, which can be invoked with its unique

ID or by importing its metadata document for the local filters, and the WSDL URL for

the remote filters.

148

6.2.4 Information Service

SensorGrid services are implemented as traditional WSDL-SOAP based Web

Services. In any architecture where several services are expected to be used there is a

need for some sort of a registry. The registry is usually responsible for keeping the

endpoint addresses of the services for easy access and manipulation. In our real-time data

Grid architecture we usually run several distributed filters consecutively. And because the

services are distributed we have multiple WSDL endpoints for any particular real-time

workflow. For these reasons we use a UDDI based Information Service to access the

service addresses. More discussion about this Information Service can be found in

following references [81-86].

6.2.5 Streaming Messaging Support

Most Scientific Applications that couple high performance computing, simulation

or visualization codes with databases or real-time data sources require more than mere

remote procedure calls traditional Web Services has to offer. These applications are

sometimes composite systems where some of the components require output from others

and they are asynchronous, it may take hours or days to complete. Such properties require

additional layers of control and capabilities from Web Services which introduces the

necessity for a messaging substrate that can provide these extra features. In the next

section we discuss NaradaBrokering a topic based publish-subscribe messaging system

that can provide us several useful capabilities for managing and serving real-time

streaming data.

149

It is obvious that in a real-time data Grid the top priority is to be able to provide

access and process the continuously streaming data. Any kind of interruption in this

process will result in data loss. To prevent data loss or similar problems the messages

should be reliably transferred between the services. Traditional Web Services are

implemented on top of the already existing Web infrastructure, which also makes them

universal. However HTTP is not appropriate for high-rate data flow requirements. For

instance if we want to disseminate real-time messages from GPS sensors which output

measurements once per second, the latency associated with the HTTP would be larger

than allowed, especially for long distances. This is also true for large scale data transfers.

Therefore a better messaging solution is required for connecting the filters and the

sources.

The real-time data Grid architecture is expected to provide multiple users with

access to multiple streaming data sources. Therefore the system must support many-to-

many interactions. Also since the sensors are always alive and continuously produce data

the reliability and fault-tolerance of the messaging architecture is extremely important.

For these reasons we have studied publish-subscribe based messaging systems as our

messaging infrastructure. Our research showed that topic based publish-subscribe

messaging systems can meet our requirements. One strong candidate in this area is

NaradaBrokering, which was explained in 4.4.1.

6.2.6 Filter Web Services

We have created a base filter class that provides NaradaBrokering publisher and

subscriber capabilities. By extending the base filter class new filters can easily be

implemented. We have created several such filters to process real-time GPS messages.

150

The filters receive messages from the NaradaBrokering messaging middleware by

onEvent function. Processed messages can be published to a NaradaBrokering topic by

using publishData function. These are the only two functions required to connect a filter

to the messaging system. By aggregating several such filters we can create an assembly

line that takes the raw data and process it along the way.

The base filter class also provides two methods to start and stop individual filters.

startFilter and stopFilter methods use Java Reflections API to invoke and stop any filter

that extends the base filter class. New filters that extend the Filter class must implement a

constructor with two arguments; the first argument is a String Array with 5 string

elements. These arguments are used to initialize the NaradaBrokering subscriber and

publishers. The second argument is another array of strings used to pass the filter specific

arguments.

For instance, following are the arguments used to start the ryo2ascii filter:

String siteName = “GLRS”;

String[] args_1 = ["niotcp","gf2.ucs.indiana.edu","3045",

"/SOPAC/GPS/OCRTN/ASCII","/SOPAC/GPS/OCRTN/ASCII/" + siteName];

String[] args_2 = [siteName];

The first set of arguments is NaradaBrokering specific: communication type, server

address, port number, topic to subscribe and topic to publish. Depending on the type of

the filter subscriber topic or publisher topic may be null. The second argument is filter

specific, and in this case contains only one string, name of a GPS Station.

An advantage of creating new filters by extending a base class is the ability to keep

track of all filters that are currently initialized and active. The base class generates a

unique ID for every invocation it receives and keeps a hash table that contains

151

‘uniqueID/filterType’ couples. This unique ID is returned to the user by startFilter

method. The user can pass this unique ID to stopFilter method as an argument to stop

that particular filter instance.

There are two possible ways for creating web services for filters: first, we can

expose individual filter classes as web services however this method may introduce

several problems such as keeping track of the Web Service end point addresses/URLs for

all filters. The second method is to create a proxy web service that is generic to all filters

extending the base filter class.

By exposing the startFilter and stopFilter methods of the base Filter class we have

created a proxy Web Service to start/stop filters. Instead of exposing individual filters as

Web Services the client need only pass the filter name and required parameters to invoke

a filter. This approach allows us to use only one service to control multiple filters in the

system which can be useful in keeping track of the status of the overall system.

For instance using the above parameters we can start the ryo2ascii filter remotely as

following

FilterWSClient f = new FilterWSClient();

String id = f.StartFilter(

 "cgl.sensorgrid.sopac.gps.filters.ryo2a scii",

 args_1,

 args_2,

"http://mastar.ucs.indiana.edu:8080/sensorgrid-

services/services/Filter");

Here the first argument is the full name of the filter to be initialized, second and

third argument s are explained above, and the last argument is the filter web service URL.

The id returned by the startFilter method looks like the following string:

52ad94ea-a460-4e5d-b33a-6e9ce6e353ad

152

We use this ID to stop the filter as following:

f.StopFilter("cgl.sensorgrid.sopac.gps.filters.ryo2 pos",

 “ 52ad94ea-a460-4e5d-b33a-6e9ce6e353ad” ,

 "http://mastar.ucs.indiana.edu:8080/sensorg rid-

services/services/Filter");

 In addition to the control functions, the filter Web Service also provides another

function getFilterCapabilities, which can be used to query a particular filter’s metadata

description. The filter metadata file, as described above contains information about the

filters such as description, name, dependencies, implementation class etc. The user can

query the filter capabilities by providing full class name, or the unique ID for active

filters.

Figure 6-6 - Overall SensorGrid Architecture

153

Figure 5-6 shows the overall SensorGrid architecture which contains several filters

for processing, converting or aggregating data streams, NaradaBrokering messaging

system for message transfer and integrated applications.

6.3 Real time Data Grid Implementation for Global

Positioning System Networks

To demonstrate the use of technologies discussed earlier we describe GPS Services

developed for the Scripps Orbit and Permanent Array Center (SOPAC) GPS networks

[157]. SOPAC’s distributed GPS networks continuously provide publicly available data.

Raw data from the GPS stations are collected by a Common Link proxy (RTD server)

and archived in RINEX files. In this section we describe the implementation of the

aforementioned technologies.

Figure 6-7 displays Plate Boundary Observatory (PBO) [158] GPS stations. As of

August 2006 more than 400 GPS stations are operational (http://pboweb.unavco.org).

Note that these stations are continuously operating and data are periodically being

collected however they are not real-time stations i.e. they do not provide access to

position measurements in real-time. The data are retrieved are made available through

online archives (FTP sites).

154

Figure 6-7 –Plate Boundary Observatory (PBO) GPS Stations in North America; Image is obtained

from SOPAC GPS Explorer at http://sopac.ucsd.edu/maps.

Figure 6-8 – California Real-Time GPS Network (CRTN). Note the Continuous GPS Stations

(CGPS) are depicted as triangles while the Real-Time stations are represented as circles. Image is
obtained from SOPAC GPS Explorer at http://sopac.ucsd.edu/maps.

155

Figure 6-8 displays Real-Time GPS networks in Southern California. The triangles

represent the continuous GPS stations while the blue and red circles represent the real-

time stations. The real-time stations are deployed by the Southern California Integrated

GPS Network (SCIGN) [159] project.

6.3.1 Real-Time GPS Networks

Global Positioning System has been used in geodesy to identify long-term tectonic

deformation and static displacements while Continuous GPS (CGPS) has proven very

effective for measurement of the inter-seismic, co-seismic and post-seismic deformation.

[160]. GPS Stations are effectively independent sensors that calculate and broadcast their

instant geographic positions. They can run for long periods of times without need for

frequent maintenance and can communicate with the data collection points using various

connection types such as Wi-Fi, modems and phone lines or fiber-optic lines. Today

networks of individual GPS Stations (monuments) are deployed along the active fault

lines, and data from these are continuously being collected by several organizations. One

of the first organizations to use GPS in detection of the seismic events and for scientific

simulations is Southern California Integrated GPS Network (SCIGN) [159]. One of the

collaborators in SCIGN is Scripps Orbit and Permanent Array Center (SOPAC) which

maintains several GPS networks and archives high-precision GPS data, particularly for

the study of earthquake hazards, tectonic plate motion, crustal deformation, and

meteorology. Real time sub-networks maintained by SOPAC include Orange County,

Riverside County (Metropolitan Water District), San Diego County, and Parkfield. These

networks provide real-time position data (less than 1 sec latency) and operate at high rate

(1 – 2 Hz). The raw measurements from the GPS sensors are continuously collected and

156

locally stored by a Common Link Proxy (RTD) Server and later made available to public

via FTP sites. The GPS networks provide real-time position data (less than 1 sec latency)

and operate at high rate (1 – 2 Hz). The RTD server also broadcasts real-time positions in

a proprietary binary format called RYO. Each RYO message contains the positions of the

stations that reported for that epoch.

The data collected from the GPS stations are served in various formats as following:

· RAW: For archiving and record purposes, not interesting for scientific

applications, not available in real-time.

· RTCM : Published real-time and no records are kept. This is useful for RTCM

capable GPS receivers as reference.

· Positions: Positions of the stations. Updated and presented every second. GPS

Time Series can be produced using these positions and they can be in different

epochs such as hourly, daily etc.

Perhaps the most interesting of these formats for scientists is position information

which can be used in scientific calculations, simulation or visualization applications. The

RTD server however outputs the position messages in a binary format called RYO. This

introduces another level of complexity on the client side because the messages have to be

converted from binary RYO format.

To receive station positions, clients are expected to open a socket connection to the

RTD server. An obvious downside of this approach is the extensive load this might

introduce to the server when multiple clients are connected.

 After the RTD server receives raw data from the stations it applies some filters and

for each network generates a message. This message contains a collection of position

157

information for every individual station from which the position data has been collected

in that particular instant. In addition to the position information there are other

measurements in a message such as quality of the measurement, variances etc.

For each GPS network, RTD server broadcasts one position message per second

through a port in RYO format.

To make the position information available to the clients in a real-time streaming

fashion we used NaradaBrokering. Additionally we developed applications to serve

position messages in ASCII and GML formats.

6.3.2 Chain of Filters

To process GPS sensor streams in real-time we have developed several filters and

Web Services to make real-time position messages available to scientific applications. In

summary, the core of the system is to implement filter chains that convert or otherwise

process the incoming data streams. These filters serve as both subscribers (data sinks)

and publishers (data sources). NaradaBrokering topics are used to organize different data

stream sources into hierarchies as shown in Table 6-3. Currently the filters are being used

to support 8 networks with 85 GPS Stations maintained by SOPAC.

In our architecture filters are small applications designed to realize simple tasks

such as transforming or aggregating messages. We have developed an abstract filter

interface which can be extended to create new filters. A basic filter is consisted of three

parts: a NaradaBrokering subscriber, a publisher and a data processing unit. The abstract

filter interface provides subscriber and publisher capabilities. Typically a filter subscribes

to a specified NaradaBrokering topic to receive streaming messages, process the received

data and publishes the results to another topic. However outputs need not be always

158

published, for instance a Database Filter may only receive the station positions to insert

into the database. Furthermore filters can be connected in parallel or serial for realizing

more complicated tasks.

The first filters we have developed are format converters that present original

binary messages in different formats since GIS applications require different

representations of geographic data. Since the data provided by RTD server is in a binary

format we developed filters to decode and present it in different formats. Once we receive

the original binary data we immediately publish this to a NaradaBrokering topic (null

filter), another filter that converts the binary message to ASCII subscribes to this topic

and publishes the output message to another topic. We have developed a GML schema to

describe the GPS position messages. Another filter application subscribes to ASCII

message topic and publishes GML representation of the position messages to a different

topic. This approach allows us to keep the original data intact and different formats of the

messages accessible by multiple clients in a streaming fashion.

The GML Schema we wrote is based on RichObservation type which is an extended

version of GML 3 Observation model [18]. This model supports Observation Array and

Observation Collection types which are useful in describing SOPAC Position messages

since they are collections of multiple individual station positions. We follow strong

naming conventions for naming the elements to make the Schema more understandable to

the clients.

We used Apache XML Beans [161] for data binding purposes and created an

application that reads ASCII position messages and generate GML instances using the

code generated by XML Beans. SOPAC GML Schema and sample instances are

159

available at: http://www.crisisgrid.org/schemas. The GML-OM Schema developed for

GPS station messages and a sample XML output is given in the Appendix.

6.3.3 GPS Station Messages and Filters

As discussed above, station messages collected from GPS stations have several sub-

sections. We have developed several filters that simplify or convert the messages since

not all the parts of a position message are needed by most clients. Figure 6-9 shows the

entire system including the GPS networks, proxy server, filters and the broker.

Figure 6-9 – Real-Time Filters for processing real-time GPS streams

Here we give sample output messages from different filters:

The first filter in our architecture is a null filter which forwards original RYO

binary messages from RTD server to a NaradaBrokering topic. The output of this filter is

unreadable binary messages.

160

6.3.3.1 Decoding RYO Messages

RYO Message Type 1 starts with a 5-byte Header which is followed by a 47-byte

GPS Position message. Three types of optional blocks may follow the Position Message

and a 2-byte checksum is located at the end of the message.

Figure 6-10 - RYO Message Parts

A non-blocking Java Socket connection is opened to RTP server to collect RYO

messages. An RYO Decoder application which uses binary conversion tools to convert

RYO messages into text messages is used to receive the raw GPS messages.

Furthermore since we do not expect clients to know about the GPS time format we

convert GPSWeek and GPSmsOfWeek values to Gregorian calendar format (i.e. 2006-

19-07/04:19:44PM-EST). Additionally since we anticipate some clients to expect

position information in terms of Latitude and Longitude, we calculate Latitude,

Longitude and Height values from XYZT Position.

The second filter is called ryo2ascii which converts RYO messages to ASCII and

publishes to a NB topic. Following is the parts of a message generated by this filter:

2005-12-12 03:23:16PM-EST LEMA 2 3

161

-2556508.624797094 -4467101.665687391 3754378.93277 0622
2.2950492465819603
36.29202035061081 -119.78237412236496 35.9290886680 37025
L1/L2 Phase XYZ Satellite
0.06901739184684381 0.0377138796649775 0.1083076448 7854985
0.08631783233709235 0.06057192662251049 -0.09281413 763791896 -
0.05338606394765551
1 2 7 42 179 2 4 7 61 117 3 5 7 23 -54 4 7 7 50 45 5 9 7 55 -75 6 24 7
35 54 7 26 7 5 -142

The message contains following parts:

Message time

Date Time
2005-12-12 03:23:16PM-EST

Station Metadata

Station
Name

Station
Number

Station Count

LEMA 2 3

XYZT Position

X Y Z
2556508.624797094 4467101.665687391 3754378.932770622

T
2.295049246581960

Latitude-Longitude-Height Position

Latitude Longitude Height
36.29202035061081 119.78237412236496 35.929088668037025

Position quality : L1/L2

Flags: Phase

Optional blocks present in this message: XYZ variance block + Satellite info block

XYZ variance block

Scale Xvar Yvar
0.06901739184684381 0.0377138796649775 0.10830764487854985

162

Zvar YXvar YZvar
0.08631783233709235 0.06057192662251049 -0.09281413763791896

ZXvar
-0.05338606394765551

Satellite Info Block

Satellite No 1 2 3 4 5 6 7
PRN 2 4 5 7 9 24 26
PRN Flags 7 7 7 7 7 7 7
Elevat ion 42 61 23 50 55 35 5
Azimuth 179 117 -54 45 -75 54 -142

Ryo2ascii filter converts the whole RYO message and does not filter out anything.

However some of the information included in a position message is unnecessary for most

clients. For instance we have developed a user interface to display the current positions of

the stations on a map. For this particular application we only need station names and their

positions in terms of latitude and longitude. For this client interface we have developed

ryo2pos filter which converts RYO messages to simple position messages. Following is a

sample output message from ryo2pos filter:

LEMA 2005-12-12 03:58:37PM-EST 36.29202028791537

-119.78237425030088 35.90217063464758

Here we only include Station name, date-time and latitude, longitude and height

values in the message. This small application is an example of how individual filters can

be chained using NaradaBrokering to achieve specific tasks. Another example application

integrated using this approach is RDAHMM which only requires X, Y, Z or Lat, Lon

Height values for a given station. We can easily write a filter to strip unwanted parts from

the message and output only the position information.

Following table shows information about these networks:

163

Table 6-2 – Real-Time GPS Networks, individual stations and RTD server information

Network
Name

RTD Server Address Stations

LACRTN 132.239.154.69:5014 vtis, hbco, cvhs, lors,
tabl, ucsb, azu1, csdh, dyhs,
vdcy, uclp, cit1, lapc

PARKFIELD n/a hogs, pomm, mida, crbt, carh,
land, mnmc, lows, rnch, cand,
masw, tblp, hunt

OCRTN 132.239.154.69:5010 oeoc, cat2, whyt, trak, sacy,
mjpk, scms, sbcc, fvpk, blsa

SDCRTN 132.239.154.69:5013 p486, monp, raap, mvfd, p472,
sio5,
dvlw, pmob, p480, dsme, oghs

IMPERIAL 132.239.154.69:5012 slms, crrs, usgc, dhlg, glrs

DVLRTN 132.239.152.72:8001 dvle, dvne, dvsw, dvse, esrw,
dvls, dvnw, ese2

CVSRN 132.239.154.69:5015 coma, rbru, lema

RCRTN 132.239.154.69:5011 pin2, widc, kyvw, psap, cotd,
pin1,
mlfp, cnpp, bill, ewpp, azry

Following table shows the NaradaBrokering topic names for several filters:

Table 6-3 NaradaBrokering topics for GPS streams

Network Name RYO Topic
(null filter Publishes
to)

ASCII topic
(ryo2ascii filter
Publishes to)

LACRTN /SOPAC/GPS/LACRTN/RYO /SOPAC/GPS/LACRTN/ASCII
PARKFIELD /SOPAC/GPS/PARKFIELD/RYO /SOPAC/GPS/PARKF IELD/ASCII
OCRTN /SOPAC/GPS/OCRTN/RYO /SOPAC/GPS/OCRTN/ASCII
SDCRTN /SOPAC/GPS/SDCRTN/RYO /SOPAC/GPS/SDCRTN/ASCII
IMPERIAL /SOPAC/GPS/IMPERIAL/RYO /SOPAC/GPS/IMPERIA L/ASCII
DVLRTN /SOPAC/GPS/DVLRTN/RYO /SOPAC/GPS/DVLRTN/ASCII
CVSRN /SOPAC/GPS/CVSRN/RYO /SOPAC/GPS/CVSRN/ASCII
RCRTN /SOPAC/GPS/RCRTN/RYO /SOPAC/GPS/RCRTN/ASCII

Similarly the ryo2pos filter subscribes to the appropriate RYO topic and publishes

to for instance /SOPAC/GPS/LACRTN/POS topic.

Here we give brief overview for some of the filters we have developed for

SensorGrid architecture:

164

ryo2nb Filter: This is a simple message forwarding application that opens a TCP

socket connection to the RTD server to receive the RYO messages and publishes to a

NaradaBrokering topic (i.e. “/RYO”).

ryo2ascii filter: Subscribes to the RYO topic to receive binary messages, converts

them to simple ASCII format and publishes to another topic (i.e. “/ASCII”).

ascii2gml filter: Geography Markup Language is perhaps today’s most popular

geographic data format produced by OGC. We have developed a GML Schema

conformant with the latest Observations and Measurements [23] extension to describe

GPS station messages. This filter converts the ASCII position messages into GML and

publishes to a new topic (i.e “/GML”). We expect that in the near future most GIS

applications will be developed to conform to OGC standards and presenting GPS

messages in GML will help us easily integrate scientific applications.

ascii2pos filter: The RYO message type contains several sub parts other than

physical position of the station such as position quality and several optional blocks.

However most of this extra information is not required by the applications. This filter

eliminates optional blocks and unnecessary information from the ASCII messages to

create concise position messages which only include a time stamp, station id and position

measurements.

Station Displacement Filter: One of the use cases of GPS stations is to detect

seismic activities. We have developed a simple filter that analyzes position information

of a GPS Station and outputs its real-time physical displacement. The filter allows

displacements to be calculated based on different time intervals, i.e. actual displacement

of the station in last hour or in last 24 hours.

165

Station Health Filter: One advantage of dealing with the real-time measurements

is that we can instantly see if any of the sensors in a network is not publishing position

information. We have developed this filter which logs the down times of the stations and

(potentially) alerts administrator if a threshold value is reached. For instance it can be

tolerable for a GPS station to be down for a few minutes due to network problems etc. but

if a station has not been publishing position values for over an hour a maintenance call

may be required.

Single Station Filter: As mentioned above the original messages imported from the

RTD server contains position information for multiple stations. However some

applications may be required to analyze data for a particular station. For this reason we

have developed this filter to pull measurements from a particular station.

6.4 Application integration Use Case: Coupling

RDAHMM with Streaming Data

The Regularized Deterministic Annealing Hidden Markov Model (RDAHMM) [58]

[60], is a data analysis program that employs Hidden Markov Models to identify

different modes of the system and their probabilistic descriptions. RDAHMM has

successfully been used to identify mode changes in GPS time series data. With the

development of our real-time GPS data support architecture a new version of RDAHMM

has been under development to analyze streaming data. Current version operates in two

phases: Training and Evaluation. In our test case first the application is trained on a set of

data for a particular station. Then it can be run continuously on accumulated data once a

166

pre-determined time window is reached. Although this version is not completely real-

time we can run it near-real time by keeping the time window relatively small.

To integrate RDAHMM with real-time data we have tested two different

approaches. The first one is based on scripting service management by using HPSearch.

The second method is based on more traditional filter method as depicted in Figure 8, by

treating RDAHMM application as another filter. Both of these methods are explained

here.

6.4.1 RDAHMM Integration using HPSearch

HPSearch [118-120] is a scripting based management interface used to manage

publish/subscribe systems. HPSearch also provides tools to wrap existing codes as Web

Services and provides a scripting based workflow management interface to connect

different components of the workflow. HPSearch uses NaradaBrokering's

publish/subscribe based messaging architecture to stream data between various services.

Ref. [25] describes an initial version of RDAHMM using HPSearch. Figure 6-11

illustrates the architecture for RDAHMM integration. As shown in the figure, the system

consists of 3 Web Services, a NaradaBrokering server and an HPSearch node.

The Web Services in this architecture are as follows:

1- DataTransfer Service: This service transfers position messages accumulated by

the RDAHMM Filter via NaradaBrokering to the server where RDAHMM actually runs.

2- RDAHMMRunner Service: Invokes RDAHMM to run on the transferred data

set.

3- GraphPlotter Service: Runs Matlab to plot RDAHMM results as TIFF files and

copies figures to a Web accessible folder.

167

Additionally HPSearch kernel also has a WSDL interface which is used by

RDAHMM Filter to start the flow.

Figure 6-11 – Filter Services and RDAHMM Integration

The system components are distributed over three servers. RDAHMM Filter and

Data Transfer Service runs on Server-1. HPSearch kernel and NaradaBrokering server are

installed on Server-2, whereas RDAHMM application, RDAHMM Runner Service and

Graph Plotter Service run on Server-3. We also run an Apache Tomcat Web Server on

Server-3 to present the generated TIFF images online.

The system uses following real-time filters described above: ryo2nb, ryo2ascii,

ascii2pos and Single Station Filter. Additionally the RDAHMM Filter subscribes to a

single station topic to save that station’s position information.

168

The experimental system works as follows: The RDAHMM Filter is a part of the

architecture discussed previously and shown in Figure 6-11. It accumulates the position

messages of a particular station in a file (data.xyz) for a certain amount of time (i.e. 10

minutes for 600 lines, or 30 minutes for 3600 lines). Once the time threshold is reached it

invokes HPSearch to start the process. HPSearch starts executing the script that defines

the service locations and the order of the services to be executed. It first invokes the

DataTransfer Service to start transferring the data.xyz file created by RDAHMM Filter to

Server-3. Once this transfer is completed HPSearch engine invokes RDAHMMRunner

Service and waits until it finishes the evaluation. Then it invokes GraphPlotter Service to

read the RDAHMM outputs and plot the resulting graphic. This cycle is repeated every

time the RDAHMM Filter reaches the time threshold.

For this system we have created a simple application that acts as the RTD server to

publish RYO messages once per second. We used an RYO data set collected by 13

Parkfield GPS Network sensors for a 24-hour period between 09-27-2004, 06:59:47 PM

and 09-28-2004, 06:59:46 PM. The latest major Parkfield earthquake occurred on 09-28-

2004 at 10:15:24 AM.

The RDAHMM outputs tell us the number of different states detected in the input

and information useful for plotting these states. Previous versions of RDAHMM were

used to analyze archived GPS daily time-series and successfully detected state changes in

the inputs which correspond to seismic events.

Our tests show that the real-time filters used in this architecture do not introduce

any overhead. Since the GPS messages are received every second it is expected from the

real-time filters to complete processing under one second not to skip the next message.

169

According to our timing measurements all of the four real-time filters finish message

processing under 100ms. We have tested RDAHMM using two different methods. First

we used a sliding window method and run RDAHMM for every 1000, 3000, 5000 etc.

lines of data. Next we applied an increasing window method by transferring every 1000

new measurements to the RDAHMM server and appending this to previous data file.

Thus RDAHMM was run on increasing data sizes.

6.4.2 RDAHMM Integration as a Filter

The second method we used to couple RDAHMM with real-time data is by using

RDAHMM as another filter. This method requires the RDAHMM Filter to be deployed

on the same server as the actual RDAHMM application. Then the filter is expected to

listen to the ASCII position topic and accumulate certain number of messages. As soon as

the limit number is reached the RDAHMM Filter invokes the actual RDAHMM

application for the accumulated data. Figure 6-12 depicts the NaradaBrokering topic

hierarchy for this particular application integration case.

Figure 6-12 - NaradaBrokering topics can be arranged in a hierarchical order.

170

6.5 Real-Time display of the GPS station positions on

Google Maps using AJAX methods

To demonstrate the technologies discussed earlier we have developed several JSP

based client interfaces leveraging AJAX [162] techniques. The user interfaces we discuss

here demonstrate use of topic based publish-subscribe messaging for managing and

serving real-time data coupled with several real-time data filters.

AJAX or Asynchronous JavaScript and XML is a relatively new web development

technique for creating highly interactive web interfaces. AJAX is not a technology by

itself rather a name for using a collection of several well-known technologies together. It

employs XHTML or HTML, JavaScript, DOM and XMLHttpRequest. XMLHttpRequest

is originally developed by Microsoft and available since Internet Explorer 5.0. This

object is used to exchange data with the server asynchronously.

Traditionally user’s every action generates an HTTP request; in the case of AJAX

these requests are JavaScript calls to the server side which allows only the related portion

of the web pages to refresh instead of whole page to be submitted to the server and

refreshed. This technique allows creation of powerful user interfaces and uninterrupted

browsing experience for the users.

Creating AJAX compatible pages is relatively simple. Here we summarize common

JavaScript techniques:

• Creating an XMLHttpRequest Object

For any browser, except IE var requester = new XMLHttpRequest();

For IE var requester = new ActiveXObject("Microsoft.XMLHTT P");

171

• Transporting Data using an XMLHttpRequest Object

To retrieve data from the server we use two methods:

open() to initialize the connection,

send() to activate the connection and make the request. i.e.

requester.open("GET", "getFaultNames.jsp?State=CA") ;

requester.send(null);

• To find out if the data retrieval is done we check the status of the readyState

variable. Object’s status may be any of the following:

0 – Uninitialised

1 – Loading

2 – Loaded

3 – Interactive

4 – Completed

requester.onreadystatechange can be used to monitor the readyState

variables status.

if (requester.readyState == 4){

 if (requester.status == 200){

 success();

 }

 else{

fail ();

}

 }

• After a successful request XMLHttpRequest object may hold data in one of the

two properties: responseXML or responseText .

responseXML stores a DOM-structured XML data, such as:

<Fault >

 < Name>San Andreas </ Name>

</ Fault >

172

• We use JavaScript XML parsing methods such as getElementsByTagName(),

childNodes[], parentNode…

var faultNameNode = requester.responseXML.

getElementsByTagName(“Name")[0];

var faultName = faultNameNode.childNodes[0].nodeVal ue;

• We can then use Google Map JavaScript functions to create the browser display.

• responseText stores the data as one complete string in case the content type of

the data supplied by the server was text/plain or text/html.

Most of the AJAX compatible interfaces that invoke JAVA classes on the server

side use Java Servlets. However since our user interfaces are based on JSP we have

developed a novel method for making AJAX calls from Java Server Pages.

In the 1st JSP page we have a JavaScript method that creates an XMLHTTPRequest

and sends it to a second JSP page:

 function checkForMessage() {

 var url = "relay.jsp";

 initRequest(url);

 req.onreadystatechange = processReqChange;

 req.open("GET", url, true);

 req.send(null);

 }

The initRequest method creates the actual request object:

function initRequest(url) {

 if (window.XMLHttpRequest) {

 req = new XMLHttpRequest();

 } else if (window.ActiveXObject) {

 isIE = true;

 req = new ActiveXObject("Microsoft.XMLHTTP");

 }

}

173

In the 2nd JSP page (relay.jsp) we only invoke the server side Java class with the

JSP response parameter.

<% Bean.getNames(response); %>

On the server side when the request arrives, the Java class checks for new messages

from the NaradaBrokering server and saves these position messages in XML format in

the response object as follows:

Once the response object is returned processReqChange method parses the

response and extracts the elements from the XML document.

Figure 6-13 depicts the integration of Real-Time GPS messages, NaradaBrokering

and AJAX based user interfaces.

<message >
 <pos >
 <name>DSME</ name>
 <lat >33.03647257927002 </ lat >
 <lon >-117.24952051832685 </ lon >
 </ pos >
 <pos >
 <name>OGHS</ name>
 <lat >33.13060260841207 </ lat >
 <lon >-117.04175378543312 </ lon >
 </ pos >
 <pos >
 <name>PMOB</ name>
 <lat >33.357234902933584 </ lat >
 <lon >-116.85953161093065 </ lon >
 </ pos >
 <pos >
 <name>MVFD</ name>
 <lat >33.21086802863064 </ lat >
 <lon >-116.52529897245469 </ lon >
 </ pos >
 <pos >
 <name>P486</ name>
 <lat >33.260186243838994 </ lat >
 <lon >-116.3222711652632 </ lon >
 </ pos >
 <pos >
 <name>P482</ name>
 <lat >33.24017400862219 </ lat >
 <lon >-116.67139746579954 </ lon >
 </ pos >
</ message >

174

Figure 6-13 - Architectural diagram for Real-Time GPS messages and AJAX integration

For this demo architecture we use an online XML document (RSS feed) provided

by SOPAC to retrieve up-to-date list of available GPS stations. This document contains

several properties of each station such as the station name, the network it belongs to,

latitude and longitude values, and the RTD server IP address and the port number for

receiving the binary positions. Following is a segment from this file:

175

Figure 6-14 shows all of the GPS stations managed by SOPAC. Each GPS network

has a distinct color.

Figure 6-14 – Real-Time GPS networks in Southern California displayed on Google Maps. A

list of the Real-Time networks and corresponding symbols are given at the right side of the figure.

<station >

 <network >

 <name>LACRTN</ name>

 <ip >132.239.154.69 </ ip >

 <port >5014 </ port >

 </ network >

 <id >vtis </ id >

 <longitude >-118.294 </ longitude >

 <latitude >33.713 </ latitude >

 <status >up</ status >

</ station >

176

Our user interfaces first retrieves the XML document from SOPAC and creates a

HTML form for user to select a network as displayed in Figure 6-15.

Figure 6-15 - Network selection page for AJAX and Google Maps Demo

177

Once the user selects a network and clicks the Submit button a server side Java

Bean subscribes to the appropriate NaradaBrokering topic and starts receiving position

messages at the same time user is forwarded to the second JSP page which contains a

Google Map.

Figure 6-16 – Real-Time Data Display on Google Maps. This figure shows the real-time GPS

stations belonging to SDCRTN network on the map and the actual latitude and longitude position at

the bottom.

Figure 6-16 shows real-time GPS stations from San Diego County Real-time

Network (SDCRTN) on the Google maps. The values shown here are the actual real-time

latitude-longitude values of the stations obtained from the RTD server. GPS stations

178

which did not publish a position message in the previous epoch are represented with red

markers while online stations are shown with green markers.

6.5.1 Near Real-Time Data Analysis Display on Google Maps

One of the most significant implications of real-time or near real-time data analysis

is the potential capability this gives us to evaluate the results as the event being

investigated is actually happening right now. This is perhaps the most important feature

the sensors can offer us. Whatever the entity the sensors are measuring the ability to

evaluate the data on the fly gives authorities to take action on time. Crisis Management

systems may greatly benefit from this capability.

As we have discussed above in RDAHMM integration scenario SensorGrid

architecture enables seamless integration of the sensor streams with the data analysis

applications. Scientific visualization tools are important group of software for scientists

to see and demonstrate the result of data analysis. In this section we discuss two examples

which demonstrate the successful coupling of simple visualization applications with real-

time data streams.

6.5.1.1 GPS Station Position Changes on Google Maps

One of the cases we can use the GPS station messages is to visualize the

movements of the stations. This can be especially helpful to understand the long-term

tectonic movements. At the same time observing the status changes of a group of stations

in pre-seismic periods may help us correlate small activities with earthquakes.

For these reasons we have developed a simple visualization application to display

the position changes of the stations. We have integrated this application with the

179

SensorGrid as in RDAHMM scenario. A data accumulation filter was deployed to listen

to the ASCII position topic of each network and pick up the individual station positions.

This filter was set to collect as many as 600 data points (roughly equal to 10 minutes

worth of data) and trigger the visualization software to visualize the accumulated data.

Figure 6-17 – GPS Station Position Changes are displayed on Google Maps. The pop-up window

displays the relative position change of the DVLW station for the last 600 measurements or

approximately 10 minutes.

We have used Google maps to display the visualization results as shown in Figure

6-17. The data visualization was performed for X, Y and Z positions of each station. The

picture shows the result for X axis position change for the last 10 minutes. User can see

the Y and Z axis position changes by clicking to the corresponding tab.

180

6.5.1.2 RDAHMM Analysis Results on Google Maps

The second visualization example is display of RDAHMM data analysis results on

Google Maps. As discussed in the second RDAHMM integration scenario the application

runs on certain number of data points and creates several output files. We have developed

a visualization filter to display the RDAHMM results. For a given time series data

RDAHMM detects unique states, and marks them in the output files. The visualization

filter is triggered after the RDAHMM analysis was complete after every 600 data points.

Figure 6-18 – RDAHMM Analysis Results Displayed on Google Maps

A sample result of RDAHMM output visualization is shown in Figure 6-18. As it

can be seen from the figure unique states are represented in different colors to help

181

understand when exactly a state change has occurred. Similar to the previous example the

visualization filter is run for X, Y and Z coordinates separately.

6.6 Summary

In this chapter we have discussed a Grid Architecture for coupling real-time data sources

with Web Services using a publish-subscribe messaging system. The architecture is based

on sequentially deployed filters around a publish-subscribe messaging system to receive

and process real-time data streams. This architecture has potential uses for crisis

management and rapid response systems. We have also demonstrated successful

implementation of our approach for GPS data streams. The system described in this

chapter is currently actively being used in several projects by Scripps Institution of

Oceanography and NASA scientists.

182

Chapter 7

Performance and Scalability of the Real-Time

Data Grid

7.1 Introduction

In Chapter 6 we have discussed Web Service based filter architecture to couple

real-time data sources with applications and presented an implementation of this

architecture for permanent Global Positioning System networks. The SensorGrid

implementation has so far been used in several projects for archival and real-time data

access. In this chapter we discuss Real-Time Data Grid performance and scalability tests.

The main goal of these tests is to find out if our filter architecture is scalable for use with

large numbers of real time data providers and clients.

Real-time data sources such as sensors are generally used by small number of

experts and specific applications. However because the pervasive nature of internet

helped diverse user groups to have access to various types of data, sensors can be thought

183

of the next generation data sources which could supply Web with real-time

measurements. The SensorGrid architecture may help make the sensors Web accessible,

however this requires the system to support many number of data producers and clients to

be served simultaneously. Continuous operation is crucial for the sensor data processing

applications which might be used in decision making such as in disaster management, or

rapid response cases. Therefore the SensorGrid system should be evaluated carefully both

from performance and scalability aspects. The system should be stable enough to work

indefinitely and should not be affected by addition or removal of new clients or data

sources.

As discussed in the previous chapter our real-time data Grid implementation is

based on three types of major components; filter Web Services, Information Services and

publish/subscribe messaging system. Both the filters and the messaging system are

required components for real-time, continuous and streaming operation. On the other

hand the Information Service is usually only used at the beginning of a session for

gathering information about the location of the filter Web Services thus is not part of the

continuous operation. Therefore the performance of the system is directly affected by the

deployed filters and the messaging system. For these reasons we focus the performance

tests on the integration of the filters and the messaging substrate.

Perhaps the most obvious unique characteristic of a real-time sensor data Grid from

more traditional Grid frameworks is the need for providing support for continuous

operation. There should be no interruptions on the data flow, and the message delivery

system should be able to handle this type of operation. The filters should be tested for any

184

type of memory leaks, which could result in interruption of the sensor message

processing.

7.2 Testing the Real-Time GPS Data Grid

Implementation

In Chapter 6 we have described the implementation of the Real-Time Data Grid

architecture for managing GPS data streams. The implementation is built using topic

based publish-subscribe messaging system and filter Web Services. In this application

domain the GPS streams are made available to the users through a series of filters

connected by the NaradaBrokering messaging substrate. The specific application area for

the Grid consists of 8 GPS networks each of which contains as many as 10 individual

permanent stations. The GPS stations publish their positions regularly once per second.

Currently the system supports real-time access to 85 stations maintained by SOPAC. The

total number of real-time stations deployed by Southern California Integrated GPS

Network (SCIGN) is 250. The trend in this specific field shows that more real-time

stations will be deployed around the globe in the near future. This fact is in line with the

trends in sensors related developments which shows that increasing numbers of sensors

are being used globally. Therefore in the near-future we should expect to have large

numbers of sensors producing data and clients plugging into the real-time streams. To

support large numbers of GPS networks and customers for prolonged time periods it is

important to identify the limits of the system components.

In the simplest setup the system will comprise of a broker and several filters. So the

system performance will be mainly affected by the performance of the broker since the

185

filters will mostly be deployed on different servers. However in some cases where large

numbers of filters are run on the same server performance degradation can be expected.

Our tests so far show that we can use a broker for several networks, with running at

least 3 filters for each network. We run this setup for over 3 months without any

problems. However since the system is supposed to be expandable to support hundreds of

clients and tens of GPS networks, we should find the thresholds where the system

performance starts to degrade.

The messaging broker in the system is responsible for routing the real-time streams

from sources to the subscribers. Since the data is continuously flowing in 1Hz frequency

we want the messages to be delivered in less than 1sec before the next message is

received, and we do not want any kind of queuing to delay the message delivery. Any

queuing lasting more than one second or temporary storage of the messages will be

extremely risky since new messages will arrive continuously and the queue will continue

to grow, causing delivery failures.

Therefore the performance tests should focus on finding out the maximum number

of real-time providers and clients a single broker can support without introducing

additional overhead or become unresponsive. There exist limits for the broker in terms of

the supportable numbers of publishers or subscribers as well as a maximum data rate.

7.3 Test Methodology

To test the performance of the system we have created a basic setup which consists

of several filters and a single broker. In this setup we have three filters: A message

forwarding filter to route GPS messages from the RTD server to the NB server, a RYO to

186

ASCII converter and a simple client filter. In the normal operation we plug into the

SOPAC RTD server to receive the GPS messages however for the performance tests we

record the raw GPS messages for 24 hours and replay them using another filter.

We wrote two filters for recording and replaying the binary RYO messages: RYO

Recorder filter and RYO Publisher filter. The first filter subscribes to a RYO topic and

creates daily GPS records by saving incoming messages into files. It creates a new file

after midnight, and names it to reflect of which GPS network it holds the records and for

which date. For instance a file named CRTN_01-09_11_2006-12_00_00_AM.ryo has

RYO records of the CRTN_01 network for the date 09/11/2006 and the first sample was

collected at 12:00:00 AM.

In our performance tests we use RYO Publisher filter to publish the binary

messages in these files to a broker topic. This way we are replacing the actual RTD

server with a filter, which allows us to create as many GPS network as we want. The

RYO Publisher filter also provides capability to change the message frequency. Currently

the actual RTD server publishes network messages at 1Hz frequency, i.e. one message

per second is published for each network. By changing a filter parameter we can change

this frequency and hence the data flow rate. Considering the fact that in the near future

the GPS stations are expected to work on 2Hz frequency, i.e. send their positions twice in

a second, this capability of the RYO Publisher filter allows us to simulate future GPS

networks.

Overall performance of the system can be estimated by measuring several

characteristics:

1- The stability of the system for continuous operation

187

2- Ability to support multiple data sources

3- Ability to support multiple clients

4- End-to-end message delivery times

5- Ability to preserve the order of the incoming messages

Figure 7-1 depicts the basic system configuration for the performance tests. The test

system consists of three filters and a NaradaBrokering server. This is the simplest filter

configuration that allows clients to access the GPS messages in human readable format.

The first filter is the RYO Publisher which replaces the RTD server used in real-

world operation. The RYO Publisher filter reads a daily RYO archive file and publishes

the GPS position messages to a broker topic in 1Hz frequency. The RYO to ASCII

Converter filter converts the binary messages into ASCII format and publishes to a new

topic; finally the Simple Filter subscribes to this topic and receives them.

Figure 7-1 – SensorGrid Performance Test Setup includes three real-time filters and a broker

188

To measure the mean end-to-end delivery time for messages we take measurements

at 4 points:

1- Before the message is published by the RYO Publisher,

2- As soon as it is received by the RYO to ASCII converter filter

3- After the format conversion and right before publishing to another topic

4- When it is received by the Simple Filter

The configuration in Figure 7-1 has a complete network path from 1 to 4, but it also

includes RYO to ASCII conversion between 3 and 4. So in order to find the actual wire

transfer times we subtract the format conversion cost from the total time:

Ttransfer = (T2 – T1) + (T4 – T3)

Other than the network delay, we also test if the messages are delivered in the

correct order. To do this the RYO Publisher marks the outgoing messages in increasing

order. It also records the message size, which may affect the transfer time.

We use NaradaBrokering event properties to pass the timestamps and other

information from one filter to another. To do this the RYO Publisher creates a string with

three values and inserts it as MSGSTAMP property into the NB Event it is about to

publish; The first value is the message number, the second number is the size of the

message in bytes and the last value is the time stamp in milliseconds. When the

subsequent filters receive the NB Event they first extract the MSGSTAMP property and

append the current time stamp. This way all publish and subscribe operations in the filter

chain will be marked in the MSGSTAMP property. When the final filter receives a

189

message it just extracts the string then appends its timestamp and saves it in a file for

further analysis. Two message stamp samples are given here:

Message
Number

Message
Size

(Bytes)

Time Stamp
1

Time Stamp
2

Time Stamp
3

Time Stamp
4

1 175 1159247077749 1159247078314 1159247078349 1159247078472

2 1561 1159247079030 1159247079034 1159247079058 1159247079063

Table 7-1 – Time Stamps Created for Performance Tests

To measure the five characteristics of the system as described above we identified

following test cases:

1- Stability of the system for continuous operation

2- Number of GPS networks that can be supported by a single broker

3- Number of clients that can be supported by a single broker

4- Number of topics that can be supported by a single broker

To eliminate the outliers in the final measurements we recursively apply a Z-filter.

Given a number of measurements the Z-filter finds if any particular value is an outlier by

using its standard deviation value and the average value of all the entries. For a

measurement (x) the formula for the z-filter can be expressed as:

Z_value = abs[t - average] / t standard_deviation

Then the calculated value is compared to a cutoff value, which is usually set to 2.5.

If the z-value is greater than the cutoff value then it is considered an outlier and removed

from the measurements.

7.4 Test Results

In this section we discuss the test results.

190

7.4.1 System Stability Test

The first test is to run the system shown in Figure 7-1, for 24 hours and record the

timings. At the end of the test we first measure the average message delivery times, and

then by dividing the timings into segments, figure out if continuous operation degrades

the system performance. We also want to see if the messages will be delivered in the

incoming order.

Real-Time Message Transfer Time

0

1

2

3

4

5

6

0:
00

1:
30

3:
00

4:
30

6:
00

7:
30

9:
00

10
:3

0

12
:0

0

13
:3

0

15
:0

0

16
:3

0

18
:0

0

19
:3

0

21
:0

0

22
:3

0

Time of the Day

T
ra

ns
fe

r T
im

e

Transfer Time Standard Deviation

Figure 7-2 – System Stability Test Results for 24-hour operation of the sample test setup.

Figure 7-2 illustrates the results of the first test. The test was run for 24 hours. The

last filter in the test setup described in Figure 1 records timings from all steps for each

message published every second. We apply a Z-filter to clean the outlier values, and

calculate averages for each half hour. Each point in the graph corresponds to 1800

measurements or roughly equal to 30 minutes worth of data. The results show that the

191

transfer time is stable for average around 5.6ms. Overall the test shows that the

continuous operation does not degrade the system performance.

7.4.2 Maximum number of GPS networks a single broker can

support

Another important feature the system should provide is to be able to serve multiple

publishers simultaneously. This is important for managing GPS streams because there are

multiple GPS networks we need to support simultaneously.

For this test we keep the original configuration described in Figure 7-1 intact, and

increase the number of the sensor data sources by adding new RYO Publishers. Thus we

simulate publishing messages from multiple GPS networks. The result of this test allows

us to specify the number of networks one single broker should be used in the real world

applications.

Figure 7-3 – Multi Publisher Test Architecture

192

Figure 7-3 shows the test architecture described in Figure 7-1 with additional RYO

Publishers. Note the NaradaBrokering topics are used to connect filters with each other.

The RYO Publisher 1 publishes the raw data to the Topic 1; the RYO to ASCII converter

subscribes to this topic and receives the binary messages, which in turn publishes the

converted messages to Topic 2. Subsequently the Simple Filter receives the ASCII

messages from the Topic 2. For this particular test, we then start new RYO Publisher

filters as shown in Figure 7-3. Each of the new publisher filters publishes binary data to a

new topic.

We have run this test for two consecutive days. Initially the system consisted of the

components shown in Figure 7-1, but after every 30 minutes we started 50 new

publishers. The maximum number of the publishers we were able to reach was 1000

which is due to the fact that the maximum number of open-file descriptors the operating

system allowed is 1024. At the end of the test, we removed the outliers from the results

and divided the results into 1800-entry segments which is roughly equal to 30 minutes of

GPS data stream.

As Figure 7-4 and Figure 7-5 show the message delivery time is always stable at

around 5ms. We don’t observe any unexpected increase or decreases. This shows that

even with maximum number of publishers allowed by the broker, the system supports

GPS message delivery without any problems.

We also confirmed that the message order is preserved during the test run.

193

Real-Time Message Transfer Time

0

1

2

3

4

5

6

0:
00

1:
30

3:
00

4:
30

6:
00

7:
30

9:
00

10
:30

12
:00

13
:30

15
:00

16
:30

18
:00

19
:30

21
:00

22
:30

Time of the Day

T
ra

ns
fe

r
T
im

e

Transfer Time Standard Deviation

Figure 7-4 – Multiple publisher test results for the first 24 hour

Real-Time Message Transfer Time

0

1

2

3

4

5

6

0:
00

1:
30

3:
00

4:
30

6:
00

7:
30

9:
00

10
:3

0

12
:0

0

13
:3

0

15
:0

0

16
:3

0

18
:0

0

19
:3

0

21
:0

0

22
:3

0

Time of the Day

T
ra

ns
fe

r T
im

e

Transfer Time Standard Deviation

Figure 7-5 – Multiple publisher test for the second 24 hour with 1000 active publishers

194

7.4.3 Maximum number of clients a single broker can support

In the second test we explored the limits of the system from the data provider side.

In the third type of the tests we look at the system from the client’s side and try to find

the number of clients the basic system described in Figure 7-1 can support. Determining

this limit is important for providing uninterrupted real-time data access to large number

of clients.

In these tests we will have only one GPS Network publishing the data and increase

the number of Simple Filters to simulate the real-time data clients. The result of these

tests will allow us to decide when to deploy a new broker if large number of customers

plug into the real-time streams. For this test the number of clients can be increased

exponentially.

Figure 7-6 – Multi Client Test Architecture

195

Figure 7-6 shows the system architecture for test 3. Note the RYO Publisher and the

RYO to ASCII Converter filters are connected the same way as in test 2, however in this

particular test we run multiple Simple Filters which are all connected to the Topic 2. This

allows us to see if the system can support distribution of real-time messages to large

number of clients without introducing additional overhead. For our GPS applications the

message frequency is 1Hz, therefore we expect messages delivered to the clients under

1000ms.

Real-Time Message Transfer Time
Multiple Subscribers

0

5

10

15

20

25

30

35

40

0:
00

1:
30

3:
00

4:
30

6:
00

7:
30

9:
00

10
:30

12
:00

13
:30

15
:00

16
:30

18
:00

19
:30

21
:00

22
:30

Time Of the Day

T
ra

ns
fe

r
T

im
e

(m
s)

Transfer Time(ms) Standard Deviation

Figure 7-7 – Multiple Subscribers Test Results

Figure 7-7 shows the results of the test 3. The test starts exactly as depicted in

Figure 1, but after every 30 minutes we add 100 Simple Filter clients to the system. As a

result at the end of the 5th hour there are 1000 subscribers. As explained in test 2 the

broker allows only 1024 socket connections to be open simultaneously. Therefore after

the 5th hour the system works with 1000 clients for another 19 hours. We run this test for

196

two consecutive days. The results shown in Figure 7-7 are the average of these two

successive tests conducted for two consecutive days.

The test results tell us that the behavior of the broker for multiple clients is different

than with multi publishers. In the multi publishers case the average transfer time for GPS

messages is almost always around 5ms which is same as the single publisher and single

subscriber case described in test 1. Thus we can say that the number of the publishers in

the system does not affect the overall performance, as long as the number of the clients

do not exceed a certain threshold. On the other hand increasing the number of clients has

an obvious effect on the average message distribution time. This is due to the fact that the

broker needs to forward messages to many receivers, which takes more time.

Figure 7-7 shows that for every 100 clients subscribing to the same topic in 30

minutes period, the average message delivery time increase a few milliseconds. The total

number of clients reaches to 1000 after 5 hours and the average delivery time from the

publisher to the final client filter increases to 35ms. Although this is several times higher

than the average time measured in tests 1 and 2 it is still acceptable, since the delay

between successive GPS messages is 1 second.

To sum up, this test shows that the system with a single broker scales up to a

thousand clients with an acceptable transfer delay.

7.4.4 Multiple Broker Test

The test system described in Figure 7-1 is the most basic configuration to provide

human readable GPS messages for our application use case. The first three test cases

explained in this chapter show that this system is stable for the continuous operation and

scales up to the maximum number of file descriptors allowed by the server’s operating

197

system. Both in multiple-publisher and multiple-client tests we identified the limits of the

system as 1024 concurrent clients or publishers. Although this is the upper limit of the

broker without changing the operating system variables for increasing open file

descriptors, the system might need to support many more clients or producers. Therefore

we have investigated an alternate approach for increasing the number of the clients to

support. This approach is based on creating distributed NaradaBrokering broker network.

NaradaBrokering allows creating broker clusters for extending message delivery

Figure 7-8 – Multiple Broker Test

Figure 7-8 displays the setup for multiple-broker test. For this test we first linked

two NaradaBrokering servers with each other utilizing broker’s networking capability.

This allows brokers to exchange messages and provide access to streams on the same

198

topics. For instance any message published to Topic-A on the first broker can be

retrieved from both Broker-1 and Broker-2 from Topic-A.

This configuration potentially can solve the limits we faced in the previous tests

because now we can have as many as 1024 connections on each broker. To prove that we

can actually overcome the limits set by the operating system we executed this test by

connecting 750 clients to each broker. Thus in total the system was run with 1500 clients

for 24-hour period.

Multiple Broker Test
Broker 1

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

0:
00

1:
30

3:
00

4:
30

6:
00

7:
30

9:
00

10
:3

0

12
:0

0

13
:3

0

15
:0

0

16
:3

0

18
:0

0

19
:3

0

21
:0

0

22
:3

0

Time Of The Day

T
im

 (
m

s)

Transit Time Standard Deviation

Figure 7-9 – Total transit times for the first broker; Note that in the first 30 minutes we increase the

number of the clients to 750 and the average transmit time reaches to 30ms.

To show that multiple-broker configuration is feasible and does not introduce

unacceptable overheads we took timing measurements for each broker. Figure 7-9 shows

the timings from the Broker-1 which demonstrates similar behavior with the previous test

shown in Figure 7-7. Here we see that continuous operation does not degrade the

performance.

199

Multiple Broker Test
Broker 2

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

0:
00

1:
30

3:
00

4:
30

6:
00

7:
30

9:
00

10
:3

0

12
:0

0

13
:3

0

15
:0

0

16
:3

0

18
:0

0

19
:3

0

21
:0

0

22
:3

0

Time Of The Day

T
im

e
(m

s)

Transfer Time Standard Deviation

Figure 7-10 – Total transfer times for the second broker; We start 750 clients in the first 30 minutes

and the average transfer times reach to 35ms.

Figure 7-10 shows the test results for the second broker. Overall behavior of the

Broker-2 is very similar to the Broker-1 except there is a 5ms addition in this case. This

5ms overhead is due to the fact that the messages published to Broker-1 is processed in

this broker and sent to Broker-2. Even with this extra overhead the system performance is

acceptable and the 35ms transfer time is acceptable since the continuing GPS messages

arrive in 1sec or 1000ms intervals.

This test shows that the system can be scaled up by creating NaradaBrokering

networks. This potentially means that there is no hard limit on the number of sensors or

clients to support.

It should also be noted that for all tests described above we have also checked and

confirmed that the message ordering was preserved.

200

7.5 Summary

In this chapter we have discussed the performance and the stability aspects of our

real-time data Grid architecture. We have designed a basic filter system which represents

the conventional use of our system to support real-time GPS streams. We have executed

several tests to find the limits of the system in terms of the number of sensors and clients

that can be supported. The test results have shown that the system can be used up to 1024

clients or sensor streams due to the operating system restrictions. To overcome this limit

we designed a multiple-broker test and shown that this setup can support 1500 clients for

continuous operation. The last test also shows that the system can be expanded to support

as many clients or sensors as required by creating broker networks.

201

Chapter 8

Conclusion and Future Research Directions

8.1 Thesis Summary

In this thesis we presented a Service Oriented Architecture to provide seamless

access to both archival and real-time geographic data. It provides a unified framework

with common interfaces for accessing and manipulating distributed geospatial data

sources. The architecture is based on Web Services and Grid Messaging paradigms and

provides high rate, high performance data transfer options for scientific applications.

The SensorGrid architecture is an example of the Grids of Grids [GOG] paradigm

[29]. Grids of Grids are built around Service Oriented Architecture principles by

employing family of services and integrating them with common messaging substrates

and information services. Our implementation includes Data Grid services for supporting

distributed access to stored geospatial data and filter services for accessing real-time

202

sensor measurements. We used NaradaBrokering publish-subscribe system to implement

streaming services for both archival and real-time data access and demonstrated the

performance of these services.

We have developed Streaming Web Feature Service for the GIS Data Grid which

provides high performance and high rate data transfer options. This service utilizes

NaradaBrokering to deliver geographic features to the clients which provides

performance improvement over traditional Web Services. Further performance

improvements gained by incorporating Binary XML frameworks with this service.

Integration of the Binary XML frameworks proved to have improved the performance for

greater network distances by a significant margin. We conducted extensive performance

tests to analyze the performance of the streaming WFS and determined that it can be used

in scenarios where high rate data access is required.

To support Real-Time Data Grids we developed the notion of Sensor Filter Grids.

Sensor data sources have unique characteristics which distinguish them from the offline,

archival data access. Sensors can be used to understand a geophysical entity in great

detail. The measurements obtained from sensors can be evaluated immediately after

receiving in real-time, or they can be stored for delayed access. However the trend in GIS

world today is moving towards on-the-fly data evaluation which requires stable, flexible

and scalable frameworks to support real-time coupling of sensors with computational

services. We developed real-time filters for this purpose. We used NaradaBrokering to

provide inter-filter communication and hierarchical arrangement of the filters via topics.

203

We conducted extensive performance and scalability tests to determine the limits of

the Real-Time Data Grid. Since one of the most important requirements for a real-time

system is stability, we tested the system for this requirement. The tests revealed that the

architecture works reliably and addition of new data sources or clients does not

significantly affect the performance. The scalability tests demonstrated that the maximum

number of data publishers and clients is determined by the system configuration and

without any modifications to the operating system parameters it can support as many as

1000 sensor sources or clients simultaneously. We demonstrated that by creating

NaradaBrokering networks the system can scale to even larger number of data providers

or clients.

8.2 Answers to Research Questions

In this section we give brief answers to the research questions outlined in Chapter 1.

1. Can we implement unified data-centric Grid architecture to provide common

interfaces for accessing real-time and archival geospatial data sources?

The major contribution SensorGrid architecture makes to the GIS community is

creating a scalable, stable and flexible framework for supporting archival and real-time

data in data-centric Grids. SensorGrid architecture is developed to fill an important gap

existing in GIS community: Lack of a software framework that bridges offline and online

data sources. Traditionally Geographic Information Systems have been used to analyze

data obtained from spatial databases; however with the sensors propagating in many GIS

related fields the need for a real-time data support system is being felt.

In chapter 3 we described the overall architecture of a Grid system that can provide

unified access to both types of geospatial data. The viability of this system has been

204

discussed and proved in subsequent chapters with extensive testing. Several application

use cases and real-world applications have shown that the system has been successfully

implemented.

2. How can we incorporate widely accepted geospatial industry standards with

Web Services?

One of the major problems that have been acknowledged by almost all parties in the

GIS world is interoperability. Hence any work in this area must consider the work that

has been done previously and build upon. We have conducted extensive field work and

background research to understand the open standards developed recently. We saw that

the OGC based data and service standards are widely being used and adopted. Therefore

we adopted the OGC standards for defining our GIS data products, and implemented our

GIS Web Services to conform to these standards.

We demonstrated that the common industry standards can be incorporated with

WSDL-SOAP based Web Services. We used these services in several scientific

workflows which also proved the usability of these services in real scientific world. This

is described in detail in Chapter 4.

3. Are the performance of the Web Services acceptable for Geographic

Information Systems and how can we make performance improvements? Can

we build services for supporting scientific GIS applications that demand high-

performance and high-rate data transfers?

The initial Web Services we created for serving geographic data proved to be useful

in use cases where the amount of the requested data is not very large and in such cases

where transfer rate is not an issue. However with large data queries the response time of

205

the Web Services are not satisfactory. Also the limitations on the amount of data that can

be served by the Web Service implementations are another issue we have faced.

To create high performance Web Services we have created streaming version of the

Web Feature Service. We used the traditional SOAP messaging for initial geospatial

query and utilized NaradaBrokering to stream query results. This method improved the

performance of the system significantly, also removed any limitations on the size of the

data that can be requested. Further improvements made by incorporating popular Binary

XML notion. We tested the system with two major Binary XML frameworks and

demonstrated that the XML transport performance can be improved significantly.

4. How can we build a Grid architecture to couple real-time sources with scientific

applications that also provides high interactivity and performance?

Serving real-time sensor measurements using traditional Web Services is not

possible since the overhead associated with creating and transferring SOAP messages is

larger than the time interval between continuous messages. This is especially true for

large network distances. For these reasons we have created real-time filters and Web

Service interfaces to control them. The filters we have created are deployed around

NaradaBrokering messaging system. We have created XML Schemas to provide

metadata descriptions for filters and filter chains. The filters are also controlled via Web

Service interfaces, which make it possible to create workflows. We also incorporated

information system for users to search and access filters and their capabilities.

5. What is the way for managing real-time data filters using Web Services?

Web Services provide standard interfaces for exposing computational resources.

We utilized Web Services to provide control interfaces for our real-time filters. The

206

filters can be remotely deployed, started, stopped or organized through these interfaces.

The filter Web Services can also be used by the clients to request the filter metadata files

which describe the information such as capabilities of particular filters.

6. Can we organize and manage real-time sensor data products using publish-

subscribe systems? Are the mechanisms of topic based publish/subscribe systems

appropriate?

Considering the sheer number of sensors and sensor networks it is wise to look for a

way to organize real-time measurements. We suggested using NaradaBrokering topics to

logically organize sensor data which also helps their discovery. We implemented this in

GPS data streams and it has been used by field scientists for various applications and

demonstrations. We have shown that the topic based publish/subscribe system is

appropriate for real-time, continuous data exchange.

7. Is the performance of the Real-Time Data Grid acceptable for uninterrupted,

continuous operation?

Chapter 7 explains the extensive scalability and performance tests we conducted for

understanding the limits of the Real-Time Data Grid implementation. The tests show that

the system is stable for continuous operation. Apart from the tests we have been running

real-time filters for over 4 months for all of the 8 GPS networks supported by SOPAC.

Our experience shows that the SensorGrid implementation can work indefinitely

provided no network or hardware related problems occur. The SensorGrid services have

also been deployed and run by GPS scientist in SOPAC for the past several months.

8. Will the Real-Time Data Grid implementation scale for large number of data

providers such as sensors and clients?

207

Scalability is another issue with the real-time sensor services because of two

reasons: First, the number of sensors and sensor networks are already very large and

growing rapidly. Hence the system should be able to support addition of large numbers of

sensors. Second, the system should be able to serve the measurements in real-time to

many clients.

For these reasons we have conducted scalability tests for the real-time filters and

explained these tests in Chapter 7. The tests show that the system can scale to as many as

1000 clients or publishers with a single broker. For supporting more numbers we create

NaradaBrokering networks, which allow the system to be enlarged infinitely.

8.3 Directions for Future Research

In this thesis we have outlined our initial research and implementations to build a

geophysical Grid architecture. We addressed several issues related to archival and real-

time data access and processing. At the end of this dissertation we discuss possible future

directions for this research.

Although there are several related projects developed or still under development,

we think that more research is needed in GIS Grids area. Our work is an example

especially aimed towards earthquake science, and it can be adopted for other domains.

However the effects of domain specific requirements are not well understood. We think

that it is important to explore how the common data standards such as GML and service

standards such as WFS or WMS are being used in different sub-domains in the GIS

community, and if any improvements are needed in such standards.

Our research for improving the service performance is focused on two fronts: better

transport mechanisms, and decreasing the message payload size. We were able to gain

208

performance improvements in both cases, by integrating publish/subscribe messaging,

and binary XML Frameworks. One interesting issue to discover is the second generation

Axis Web Service Container (Axis2) which can provide different capabilities to integrate

alternative transport protocols. Another issue that should be studied is that although the

Binary XML frameworks help in certain cases the current system is based on static, pre-

determined selections. Either the client or the server decides which binary format the

output GML is to be encoded. A case based reasoning approach, which makes the

selection based on the previous events, may help the system choose more appropriate

binary encodings and transport mechanisms.

We have also built filter based Grid architecture for real-time data access to be used

with sensor streams. The current system is being used in several projects related to GPS

sensor streams. The developments in these projects will also shape the SensorGrid

research directions. One interesting issue to study is to use Grid workflow tools such as

Taverna to create scientific workflows with real-time data streams. Research in this area

may help us better understand real-time data analysis requirements.

 The scalability tests for our real-time Grid system has shown that by creating

NaradaBrokering networks we can support as many sensors and clients as necessary.

Therefore it will be useful to have a way for the system to automatically create/deploy

required number of brokers and update the system registry on-the-fly.

209

Appendix A

Sample GML Schemas

A.1 Fault Schema

Following GML 2.1 conformant XML Schema is developed for describing

California Faults. The schema is based on the Quake Tables Database as described in

[97]

210

Figure A-1 Fault Schema

211

Figure A-2 - Coordinates elements in the Fault Schema is derived from the GML LineString
construct

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSPY v2006 (http://www.xmlspy.com) by Galip Aydin -->
<xs:schema xmlns:xs =" http://www.w3.org/2001/XMLSchema "
xmlns:fault =" http://mastar.ucs.indiana.edu/fault "
xmlns:wfs =" http://complexity.ucs.indiana.edu/~gaydin/wfs "
xmlns:gml =" http://www.opengis.net/gml "
targetNamespace =" http://mastar.ucs.indiana.edu/fault "
elementFormDefault =" qualified " version =" 0.1 ">
 <xs:import namespace =" http://www.opengis.net/gml "
schemaLocation =" http://complexity.ucs.indiana.edu/~gaydin/ogc/original/gml/2.1.
2/feature.xsd "/>
 <xs:element name =" Fault ">
 <xs:complexType >
 <xs:sequence >
 <xs:element ref =" fault:FaultId "/>
 <xs:element ref =" fault:FaultName "/>
 <xs:element name =" StrandName " type =" xs:string "/>
 <xs:element name =" Segment " type =" fault:SegmentType "
minOccurs =" 0" maxOccurs =" unbounded "/>
 </ xs:sequence >
 </ xs:complexType >
 </ xs:element >
 <xs:complexType name =" FaultType ">
 <xs:sequence >
 <xs:element ref =" fault:FaultId "/>
 <xs:element ref =" fault:FaultName "/>
 <xs:element name =" StrandName " type =" xs:string "/>
 <xs:element name =" Segment " type =" fault:SegmentType "
minOccurs =" 0" maxOccurs =" unbounded "/>
 </ xs:sequence >
 </ xs:complexType >
 <xs:element name =" Segment " type =" fault:SegmentType "/>
 <xs:complexType name =" SegmentType ">
 <xs:sequence >
 <xs:element ref =" fault:FaultId "/>
 <xs:element ref =" fault:FaultName "/>
 <xs:element ref =" fault:InterpId "/>
 <xs:element name =" SegmentId " type =" xs:int " minOccurs =" 0"/>

212

 <xs:element name =" SegmentName" type =" xs:string "
minOccurs =" 0"/>
 <xs:element name =" Strike " type =" xs:float " minOccurs =" 0"/>
 <xs:element name =" Dip " type =" xs:float " minOccurs =" 0"/>
 <xs:element name =" Depth " type =" xs:float " minOccurs =" 0"/>
 <xs:element name =" Width " type =" xs:float " minOccurs =" 0"/>
 <xs:element name =" Coordinates "
type =" gml:LineStringPropertyType " minOccurs =" 0">
 <xs:annotation >
 <xs:documentation >[LatStart, LonStart -
LatEnd, LonEnd] makes a line </ xs:documentation >
 </ xs:annotation >
 </ xs:element >
 <xs:element name =" StartCoordinate "
type =" gml:PointPropertyType " minOccurs =" 0">
 <xs:annotation >
 <xs:documentation >LatStart and LonStart
</ xs:documentation >
 </ xs:annotation >
 </ xs:element >
 <xs:element name =" EndCoordinate "
type =" gml:PointPropertyType " minOccurs =" 0">
 <xs:annotation >
 <xs:documentation >LatEnd and
LonEnd </ xs:documentation >
 </ xs:annotation >
 </ xs:element >
 <xs:element name =" LastBreak " type =" xs:string " minOccurs =" 0"
maxOccurs =" unbounded "/>
 <xs:element name =" Friction " type =" xs:float " minOccurs =" 0"/>
 <xs:element name =" ObsType " type =" xs:int " minOccurs =" 0"/>
 <xs:element name =" Recurrence " type =" fault:RecurrenceType "
minOccurs =" 0"/>
 <xs:element name =" Slip " type =" fault:SlipType "
minOccurs =" 0"/>
 <xs:element name =" DipRate " type =" fault:DipRateType "
minOccurs =" 0"/>
 <xs:element name =" StrikeRate " type =" fault:StrikeRateType "
minOccurs =" 0"/>
 </ xs:sequence >
 </ xs:complexType >
 <xs:element name =" Reference " type =" fault:RefType "/>
 <xs:element name =" LReference " type =" fault:RefType "/>
 <xs:complexType name =" RefType ">
 <xs:sequence >
 <xs:element ref =" fault:InterpId "/>
 <xs:element name =" Author " type =" xs:string " minOccurs =" 0"
maxOccurs =" unbounded "/>
 <xs:element name =" Publication " type =" xs:string "
minOccurs =" 0"/>
 <xs:element name =" Year " type =" xs:string " minOccurs =" 0"/>
 <xs:element name =" Title " type =" xs:string " minOccurs =" 0"/>
 <xs:element name =" Volume " type =" xs:string " minOccurs =" 0"/>
 <xs:element name =" Number" type =" xs:string " minOccurs =" 0"/>
 <xs:element name =" Pages " type =" xs:string " minOccurs =" 0"/>
 <xs:element name =" Comment" type =" xs:string " minOccurs =" 0"/>
 </ xs:sequence >
 </ xs:complexType >
 <xs:annotation >
 <xs:documentation >global elements </ xs:documentation >
 </ xs:annotation >
 <xs:element name =" FaultName " type =" xs:string "/>
 <xs:element name =" FaultId " type =" xs:int "/>

213

 <xs:element name =" InterpId " type =" xs:int "/>
 <!-- == -->
 <!-- ======= General Magnitude Types - Max Min and Average ============ -->
 <xs:complexType name =" RateType ">
 <xs:sequence minOccurs =" 0">
 <xs:element name =" Max" type =" xs:string " minOccurs =" 0"
maxOccurs =" unbounded "/>
 <xs:element name =" Min " type =" xs:string " minOccurs =" 0"
maxOccurs =" unbounded "/>
 <xs:element name =" Average " type =" xs:string " minOccurs =" 0"
maxOccurs =" unbounded "/>
 </ xs:sequence >
 </ xs:complexType >
 <!-- ========================= Recurrence =============================== -
->
 <xs:complexType name =" RecurrenceType ">
 <xs:complexContent >
 <xs:extension base =" fault:RateType "/>
 </ xs:complexContent >
 </ xs:complexType >
 <!-- ========================= Slip ================================== -->
 <xs:complexType name =" SlipType ">
 <xs:sequence >
 <xs:element name =" SlipRate " type =" fault:SlipRateType "
minOccurs =" 0"/>
 <xs:element name =" SlipType " type =" fault:SlipTypeType "
minOccurs =" 0"/>
 </ xs:sequence >
 </ xs:complexType >
 <xs:complexType name =" SlipRateType ">
 <xs:complexContent >
 <xs:extension base =" fault:RateType "/>
 </ xs:complexContent >
 </ xs:complexType >
 <xs:complexType name =" SlipTypeType ">
 <xs:choice minOccurs =" 0">
 <xs:element name =" StrikeSlip " type =" fault:RateType "
minOccurs =" 0"/>
 <xs:element name =" DipSlip " type =" fault:RateType "
minOccurs =" 0"/>
 </ xs:choice >
 </ xs:complexType >
 <!-- ========================= Dip ================================== -->
 <xs:complexType name =" DipRateType ">
 <xs:complexContent >
 <xs:extension base =" fault:RateType "/>
 </ xs:complexContent >
 </ xs:complexType >
 <!-- ========================= Strike ================================== --
>
 <xs:complexType name =" StrikeRateType ">
 <xs:complexContent >
 <xs:extension base =" fault:RateType "/>
 </ xs:complexContent >
 </ xs:complexType >
 <xs:element name =" Layer " type =" fault:LayerType "/>
 <xs:complexType name =" LayerType ">
 <xs:sequence >
 <xs:element ref =" fault:InterpId "/>
 <xs:element name =" LayerId " type =" xs:int " minOccurs =" 0"/>
 <xs:element name =" LayerName " type =" xs:string "
minOccurs =" 0"/>

214

 <xs:element name =" LatOrigin " type =" gml:PointPropertyType "
minOccurs =" 0"/>
 <xs:element name =" LonOrigin " type =" gml:PointPropertyType "
minOccurs =" 0"/>
 <xs:element name =" Datum" type =" xs:string " minOccurs =" 0"/>
 <xs:element name =" Origin " type =" gml:PointPropertyType "
minOccurs =" 0"/>
 <xs:element name =" Length " type =" xs:float " minOccurs =" 0"/>
 <xs:element name =" Width " type =" xs:float " minOccurs =" 0"/>
 <xs:element name =" Depth " type =" xs:float " minOccurs =" 0"/>
 <xs:element name =" LameLambda" type =" xs:float "
minOccurs =" 0"/>
 <xs:element name =" LameLambdaUnits " type =" xs:string "
minOccurs =" 0"/>
 <xs:element name =" LameMu" type =" xs:float " minOccurs =" 0"/>
 <xs:element name =" LameMuUnits " type =" xs:string "
minOccurs =" 0"/>
 <xs:element name =" Viscosity " type =" xs:float "
minOccurs =" 0"/>
 <xs:element name =" ViscosityUnits " type =" xs:string "
minOccurs =" 0"/>
 <xs:element name =" ViscosityExponent " type =" xs:float "
minOccurs =" 0"/>
 </ xs:sequence >
 </ xs:complexType >
 <xs:element name =" Coordinates " type =" gml:LineStringPropertyType "/>
</ xs:schema >

215

A.2 GPS Station Schema

This XML Schema imports GML 2.1 schemas to describe metadata about the GPS

Stations.

Figure A-3 GPS Station Schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs =" http://www.w3.org/2001/XMLSchema "
xmlns:gml =" http://www.opengis.net/gml " elementFormDefault =" qualified "
attributeFormDefault =" unqualified ">
<xs:import namespace =" http://www.opengis.net/gml " schemaLocation =" F:\
schemas\ogc_schemas\gml\2.1.2\feature.xsd "/>
<xs:import namespace =" http://www.opengis.net/gml " schemaLocation =" F:\
schemas\ogc_schemas\gml\2.1.2\geometry.xsd "/>
<xs:element name =" GPS_Site ">
 <xs:annotation >
 <xs:documentation >Permanent GPS Site
Information </ xs:documentation >
 </ xs:annotation >
 <xs:complexType >
 <xs:sequence >
 <xs:element name =" SiteCode " type =" xs:string "/>
 <xs:element name =" SiteName " type =" xs:string "/>
 <xs:element name =" Network " type =" xs:string "/>
 <xs:element name =" City " type =" xs:string "/>

216

 <xs:element name =" County " type =" xs:string "/>
 <xs:element name =" State " type =" xs:string "/>
 <xs:element name =" Location " type =" gml:PointPropertyType "/>
 <xs:element name =" DataLink " minOccurs =" 0">
 <xs:complexType >
 <xs:sequence >
 <xs:element name =" DataAddress " minOccurs =" 0">
 <xs:complexType >
 <xs:simpleContent >
 <xs:extension base =" xs:string ">
 <xs:attribute name =" type "
type =" xs:string "/>
 </ xs:extension >
 </ xs:simpleContent >
 </ xs:complexType >
 </ xs:element >
 <xs:element name =" NBAddress " minOccurs =" 0"
maxOccurs =" unbounded ">
 <xs:complexType >
 <xs:sequence minOccurs =" 0">
 <xs:element name =" NBHost "
type =" xs:string " minOccurs =" 0"/>
 <xs:element name =" NBPort "
type =" xs:string " minOccurs =" 0"/>
 <xs:element name =" NBTopic "
type =" xs:string " minOccurs =" 0"/>
 </ xs:sequence >
 <xs:attribute name =" type "
type =" xs:string "/>
 </ xs:complexType >
 </ xs:element >
 </ xs:sequence >
 </ xs:complexType >
 </ xs:element >
</ xs:sequence >
 </ xs:complexType >
</ xs:element >
</ xs:schema >

A.3 Seismicity Schema

Following schema describes the metadata about the seismic events based on several

formats. Note the location elements are constructed from GML types.

217

Figure A-4 – Seismicity schema for describing earthquakes and related metadata

218

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSPY v5 rel. 2 U (http://www.xmlspy.com) by Galip Aydin -->
<schema xmlns:seismicity =" http://mastar.ucs.indiana.edu/seismicity "
xmlns:xlink =" http://www.w3.org/1999/xlink "
xmlns:gml =" http://www.opengis.net/gml " xmlns =" http://www.w3.org/2001/XMLSchema "
targetNamespace =" http://mastar.ucs.indiana.edu/seismicity "
elementFormDefault =" qualified " version =" 3.0 ">
 <!-- import GML 2.1.2 feature and geometry schemas -->
 <import namespace =" http://www.opengis.net/gml "
schemaLocation =" F:\phd\schemas\ogc_schemas\gml\2.1.2\geometry.xsd "/>
 <import namespace =" http://www.opengis.net/gml "
schemaLocation =" F:\phd\schemas\ogc_schemas\gml\2.1.2\feature.xsd "/>
 <element name =" SeismicEvent " type =" seismicity:SeismicEventType "/>
 <complexType name =" SeismicEventType ">
 <sequence minOccurs =" 0">
 <element name =" Date ">
 <complexType >
 <sequence minOccurs =" 0">
 <element name =" Year " minOccurs =" 0"/>
 <element name =" Month " minOccurs =" 0"/>
 <element name =" Day" minOccurs =" 0"/>
 </ sequence >
 <attribute name =" DateContent "/>
 </ complexType >
 </ element >
 <element name =" Time ">
 <complexType >
 <sequence minOccurs =" 0">
 <element name =" Hour " minOccurs =" 0"/>
 <element name =" Minute " minOccurs =" 0"/>
 <element name =" Second " minOccurs =" 0"/>
 </ sequence >
 <attribute name =" TimeContent "/>
 </ complexType >
 </ element >
 <element name =" Location " type =" gml:PointPropertyType "/>
 <element name =" Latitude " type =" gml:PointPropertyType "
minOccurs =" 0"/>
 <element name =" Longitude " type =" gml:PointPropertyType "
minOccurs =" 0"/>
 <element name =" Quality ">
 <annotation >
 <documentation >SCSN - SCEDC
[location quality
'A' +- 1 km horizontal distance
 +- 2 km depth
'B' +- 2 km horizontal distance
 +- 5 km depth
'C' +- 5 km horizontal distance
 no depth restriction
'D' >+- 5 km horizontal distance
'Z' no quality listed in database] </ documentation >
 </ annotation >
 <simpleType >
 <restriction base =" string ">
 <enumeration value =" A"/>
 <enumeration value =" B"/>
 <enumeration value =" C"/>
 <enumeration value =" D"/>
 <enumeration value =" Z"/>
 <enumeration value =" E"/>
 <enumeration value =" P"/>
 </ restriction >

219

 </ simpleType >
 </ element >
 <element name =" Magnitude " type =" string "/>
 <element name =" MagnitudeType " minOccurs =" 0">
 <annotation >
 <documentation >SCEDC
[type of magnitude
'e' energy magnitude
'w' moment magnitude
'b' body-wave magnitude
's' surface-wave magnitude
'l' local (WOOD-ANDERSON) magnitude
'c' coda amplitude
'h' helicorder magnitude (short-period Benioff)
'd' coda duration magnitude
'n' no magnitude] </ documentation >
 </ annotation >
 <simpleType >
 <restriction base =" string ">
 <enumeration value =" e"/>
 <enumeration value =" w"/>
 <enumeration value =" b"/>
 <enumeration value =" s"/>
 <enumeration value =" l "/>
 <enumeration value =" c"/>
 <enumeration value =" h"/>
 <enumeration value =" d"/>
 <enumeration value =" n"/>
 </ restriction >
 </ simpleType >
 </ element >
 <element name =" Depth " type =" string ">
 <annotation >
 <documentation >kilometers </ documentation >
 </ annotation >
 </ element >
 <element name =" NPH">
 <complexType >
 <simpleContent >
 <extension base =" int "/>
 </ simpleContent >
 </ complexType >
 </ element >
 <element name =" RMS" type =" float " minOccurs =" 0">
 <annotation >
 <documentation >root mean square of travel
times </ documentation >
 </ annotation >
 </ element >
 <element name =" EventId " type =" int "/>
 <element name =" EventType " minOccurs =" 0">
 <annotation >
 <documentation >SCEDC
[local (le)(re)(ts)blast (qb)boom (sn)blast (nt)event (uk)] </ documentation >
 </ annotation >
 <simpleType >
 <restriction base =" string ">
 <enumeration value =" le "/>
 <enumeration value =" re "/>
 <enumeration value =" ts "/>
 <enumeration value =" qb"/>
 <enumeration value =" sn "/>
 <enumeration value =" nt "/>

220

 <enumeration value =" uk "/>
 </ restriction >
 </ simpleType >
 </ element >
 <element name =" NGRM" type =" int " minOccurs =" 0">
 <annotation >
 <documentation >SCEDC [Number Of Grams (i.e. #
of station traces)] </ documentation >
 </ annotation >
 </ element >
 </ sequence >
 </ complexType >
 <element name =" Catalog ">
 <complexType >
 <sequence minOccurs =" 0">
 <element ref =" seismicity:SeismicEvent " minOccurs =" 0"
maxOccurs =" unbounded "/>
 </ sequence >
 </ complexType >
 </ element >
 <!-- This Schema is based on GML 2.1.2 and supports following formats -->
 <!-- SCSN (SOUTHERN CALIFORNIA SEISMOGRAPHIC NETWORK FORMAT) -->
 <!-- SCEDC (SOUTHERN CALIFORNIA EARTHQUAKE DATA CENTER CATALOG FORMAT)-->
</ schema>

221

Appendix B

XML Files

In this section we give several sample XML files used or generated by WFS.

B.1 Sample GetFeature Request

<?xml version="1.0" encoding="iso-8859-1"?>
<wfs:GetFeature
outputFormat =" GML2" :gml =" http://www.opengis.net/gml " :wfs =" http://www.op
engis.net/wfs " :ogc =" http://www.opengis.net/ogc ">
 <wfs:Query typeName =" fault ">
 <wfs:PropertyName >name</ wfs:PropertyName >
 <wfs:PropertyName >segment </ wfs:PropertyName >
 <wfs:PropertyName >author </ wfs:PropertyName >
 <wfs:PropertyName >coordinates </ wfs:PropertyName >
 <ogc:Filter >
 <ogc:BBOX>
 <ogc:PropertyName >coordinates </ ogc:PropertyName >
 <gml:Box >
 <gml:coordinates >-150,30 -100,50 </ gml:coordinates >
 </ gml:Box >
 </ ogc:BBOX>
 </ ogc:Filter >
 </ wfs:Query >
</ wfs:GetFeature >

B.2 Sample GetFeature Response

<?xml version="1.0" encoding="UTF-8"?>
<wfs:FeatureCollection xmlns:wfs =" http://www.opengis.net/wfs "
xmlns:gml =" http://www.opengis.net/gml "
xmlns:xsi =" http://www.w3.org/2001/XMLSchema-instance "
xsi:schemaLocation =" http://complexity.ucs.indiana.edu/~gaydin/wfs
C:/Projects/WFS/xml/schemas/fault_new.xsd
http://complexity.ucs.indiana.edu/~gaydin/ogc/origi nal/wfs/1.0.0/WFS-
basic.xsd ">
 <gml:boundedBy >
 <gml:Box srsName =" http://www.opengis.net/gml/srs/epsg.xml#27354 ">
 <gml:coordinates decimal =" . " cs =" , " ts =" ">> -119.31,35 -
118,38 </ gml:coordinates >
 </ gml:Box >
 </ gml:boundedBy >
 <gml:featureMember >
 <fault >
 <name>White Wolf </ name>
 <segment >5.0 </ segment >
 <author >Rundle J. B. </ author >
 <gml:lineStringProperty >
 <gml:LineString srsName =" null ">
 <gml:coordinates >-118.65,35.26 -118.56,35.31 </ gml:coordinates >

222

 </ gml:LineString >
 </ gml:lineStringProperty >
 </ fault >
 </ gml:featureMember >
 <gml:featureMember >
 <fault >
 <name>White Wolf </ name>
 <segment >4.0 </ segment >
 <author >Rundle J. B. </ author >
 <gml:lineStringProperty >
 <gml:LineString srsName =" null ">
 <gml:coordinates >-118.73,35.21 -118.65,35.26 </ gml:coordinates >
 </ gml:LineString >
 </ gml:lineStringProperty >
 </ fault >
 </ gml:featureMember >
 <gml:featureMember >
 <fault >
 <name>White Wolf </ name>
 <segment >3.0 </ segment >
 <author >Rundle J. B. </ author >
 <gml:lineStringProperty >
 <gml:LineString srsName =" null ">
 <gml:coordinates >-118.82,35.15 -118.73,35.21 </ gml:coordinates >
 </ gml:LineString >
 </ gml:lineStringProperty >
 </ fault >
 </ gml:featureMember >
 <gml:featureMember >
 <fault >
 <name>White Wolf </ name>
 <segment >2.0 </ segment >
 <author >Rundle J. B. </ author >
 <gml:lineStringProperty >
 <gml:LineString srsName =" null ">
 <gml:coordinates >-118.9,35.1 -118.82,35.15 </ gml:coordinates >
 </ gml:LineString >
 </ gml:lineStringProperty >
 </ fault >
 </ gml:featureMember >
 <gml:featureMember >
 <fault >
 <name>White Wolf </ name>
 <segment >1.0 </ segment >
 <author >Rundle J. B. </ author >
 <gml:lineStringProperty >
 <gml:LineString srsName =" null ">
 <gml:coordinates >-118.99,35.05 -118.9,35.1 </ gml:coordinates >
 </ gml:LineString >
 </ gml:lineStringProperty >
 </ fault >
 </ gml:featureMember >
 <gml:featureMember >
 <fault >
 <name>White Mountains </ name>
 <segment >10.0 </ segment >
 <author >Rundle J. B. </ author >

223

 <gml:lineStringProperty >
 <gml:LineString srsName =" null ">
 <gml:coordinates >-118.19,37.14 -118.17,37.05 </ gml:coordinates >
 </ gml:LineString >
 </ gml:lineStringProperty >
 </ fault >
 </ gml:featureMember >
 <gml:featureMember >
 <fault >
 <name>White Mountains </ name>
 <segment >9.0 </ segment >
 <author >Rundle J. B. </ author >
 <gml:lineStringProperty >
 <gml:LineString srsName =" null ">
 <gml:coordinates >-118.2,37.23 -118.19,37.14 </ gml:coordinates >
 </ gml:LineString >
 </ gml:lineStringProperty >
 </ fault >
 </ gml:featureMember >
 <gml:featureMember >
 <fault >
 <name>White Mountains </ name>
 <segment >8.0 </ segment >
 <author >Rundle J. B. </ author >
 <gml:lineStringProperty >
 <gml:LineString srsName =" null ">
 <gml:coordinates >-118.22,37.32 -118.2,37.23 </ gml:coordinates >
 </ gml:LineString >
 </ gml:lineStringProperty >
 </ fault >
 </ gml:featureMember >
 <gml:featureMember >
 <fault >
 <name>White Mountains </ name>
 <segment >7.0 </ segment >
 <author >Rundle J. B. </ author >
 <gml:lineStringProperty >
 <gml:LineString srsName =" null ">
 <gml:coordinates >-118.24,37.41 -118.22,37.32 </ gml:coordinates >
 </ gml:LineString >
 </ gml:lineStringProperty >
 </ fault >
 </ gml:featureMember >
</ wfs:FeatureCollection >

B.3 GetCapabilities Request

<?xml version="1.0" encoding="ISO-8859-1"?>
<GetCapabilities version =" 1.0.0 "/>

B.4 Sample GetCapabilities Response

<?xml version="1.0" encoding="UTF-8"?>
<WFS_Capabilities xmlns =" http://www.opengis.net/wfs " version =" 1.0.0 ">
 <Service >

224

 <Name>Web Feature Service </ Name>
 <Title >WFS@gf1:7474</ Title >
 <Abstract ></ Abstract >
 <Keywords >WFS, OGC, Web Services </ Keywords >
 <OnlineResource xmlns:xsi =" http://www.w3.org/2001/XMLSchema-instance "
xsi:type =" java:java.lang.String "> http://gf1.ucs.indiana.edu:7474/axis/services/
wfs?wsdl </ OnlineResource >
 <Fees >None</ Fees >
 <AccessConstraints >None</ AccessConstraints >
 </ Service >
 <Capability >
 <Request >
 <GetCapabilities >
 <DCPType>
 <HTTP>
 <Get
onlineResource =" http://gf1.ucs.indiana.edu:7474/axis/services/wfs?wsdl "/>
 <Post
onlineResource =" http://gf1.ucs.indiana.edu:7474/axis/services/wfs?wsdl "/>
 </ HTTP>
 </ DCPType>
 </ GetCapabilities >
 <DescribeFeatureType >
 <SchemaDescriptionLanguage >
 <XMLSCHEMA/>
 </ SchemaDescriptionLanguage >
 <DCPType>
 <HTTP>
 <Get
onlineResource =" http://gf1.ucs.indiana.edu:7474/axis/services/wfs?wsdl "/>
 <Post
onlineResource =" http://gf1.ucs.indiana.edu:7474/axis/services/wfs?wsdl "/>
 </ HTTP>
 </ DCPType>
 </ DescribeFeatureType >
 <GetFeature >
 <ResultFormat >
 <GML2/>
 </ ResultFormat >
 <DCPType>
 <HTTP>
 <Get
onlineResource =" http://gf1.ucs.indiana.edu:7474/axis/services/wfs?wsdl "/>
 <Post
onlineResource =" http://gf1.ucs.indiana.edu:7474/axis/services/wfs?wsdl "/>
 </ HTTP>
 </ DCPType>
 </ GetFeature >
 </ Request >
 <VendorSpecificCapabilities >WSDL-SOAPE</ VendorSpecificCapabilities >
 </ Capability >
 <FeatureTypeList >
 <FeatureType >
 <Name>rivers </ Name>
 <Title >California Rivers Feature Type </ Title >
 <Abstract >A Feature that has coordinate information of california
rivers </ Abstract >
 <Keywords >California,River,Rivers,WFS </ Keywords >
 <SRS>EPSG:4326</ SRS>
 <Operations >
 <Query />
 </ Operations >

225

 <LatLongBoundingBox minx =" -124.275833 " miny =" 35.389717 " maxx =" -118.075287 "
maxy=" 41.472763 "/>
 </ FeatureType >
 <FeatureType >
 <Name>fault </ Name>
 <Title >California Fault data </ Title >
 <Abstract >California Fault data provided by USC </ Abstract >
 <Keywords >California,Fault,Segment,WFS </ Keywords >
 <SRS>NULL</ SRS>
 <Operations >
 <Query />
 </ Operations >
 <LatLongBoundingBox minx =" -124.41 " miny =" 31.89 " maxx =" -114.64 "
maxy=" 40.2 "/>
 </ FeatureType >
 <FeatureType >
 <Name>europe </ Name>
 <Title >europe borders </ Title >
 <Abstract />
 <Keywords >europe,wfs </ Keywords >
 <SRS>EPSG:4326</ SRS>
 <Operations >
 <Query />
 </ Operations >
 <LatLongBoundingBox minx =" -31.291612 " miny =" -31.291612 " maxx =" 44.834987 "
maxy=" 71.181357 "/>
 </ FeatureType >
 <FeatureType >
 <Name>states </ Name>
 <Title >US States Boundaries </ Title >
 <Abstract >Borders for states </ Abstract >
 <Keywords >borders,states </ Keywords >
 <SRS>null </ SRS>
 <Operations >
 <Query />
 </ Operations >
 <LatLongBoundingBox minx =" -178.21759836237 " miny =" 18.921786345087 " maxx =" -
67.007718759568 " maxy =" 71.406235353271 "/>
 </ FeatureType >
 <FeatureType >
 <Name>scsn </ Name>
 <Title >California Earthquake Data in SCSN Format </ Title >
 <Abstract >Earthquake data </ Abstract >
 <Keywords >California,Earthquake,WFS </ Keywords >
 <SRS>EPSG:4326</ SRS>
 <Operations >
 <Query />
 </ Operations >
 <LatLongBoundingBox minx =" 32" miny =" -122 " maxx =" 37" maxy =" -114 "/>
 </ FeatureType >
 <FeatureType >
 <Name>scedc </ Name>
 <Title >California Earthquake Data in SCEDC Format </ Title >
 <Abstract >Earthquake data </ Abstract >
 <Keywords >California,Earthquake,WFS </ Keywords >
 <SRS>EPSG:4326</ SRS>
 <Operations >
 <Query />
 </ Operations >
 <LatLongBoundingBox minx =" -122.000 " miny =" -122.000 " maxx =" 78.600 "
maxy=" 37.000 "/>
 </ FeatureType >
 <FeatureType >

226

 <Name>boundary_lines </ Name>
 <Title >California State Boundary Lines </ Title >
 <Abstract />
 <Keywords >California.Boundary </ Keywords >
 <SRS>EPSG:4321</ SRS>
 <Operations >
 <Query />
 </ Operations >
 <LatLongBoundingBox minx =" -124.376663 " miny =" -124.376663 " maxx =" -
118.074822 " maxy =" 38.088043 "/>
 </ FeatureType >
 <FeatureType >
 <Name>city </ Name>
 <Title >USA City Locations </ Title >
 <Abstract />
 <Keywords />
 <SRS>NULL</ SRS>
 <Operations >
 <Query />
 </ Operations >
 <LatLongBoundingBox minx =" -157.82343908739 " miny =" 21.305784962263 " maxx =" -
71.089115 " maxy =" 61.1919 "/>
 </ FeatureType >
 <FeatureType >
 <Name>tsunami_clusters </ Name>
 <Title >Tsunami Hotspot Clusters </ Title >
 <Abstract />
 <Keywords />
 <SRS>SRS</ SRS>
 <Operations >
 <Query />
 </ Operations >
 <LatLongBoundingBox minx =" -180 " miny =" -60.5 " maxx =" 179" maxy =" 62"/>
 </ FeatureType >
 <FeatureType >
 <Name>LANL DEMO</ Name>
 <Title >LANL</ Title >
 <Abstract >Earthquake data </ Abstract >
 <Keywords >LANL</ Keywords >
 <SRS>null </ SRS>
 <Operations >
 <Query />
 </ Operations >
 <LatLongBoundingBox minx =" -85.758003234863 " miny =" 25.363000869751 "
maxx=" 30.700000762939 " maxy =" 30.700000762939 "/>
 </ FeatureType >
 <FeatureType >
 <Name>LANL DEMO</ Name>
 <Title >LANL</ Title >
 <Abstract >IEISS Inout Data</ Abstract >
 <Keywords >LANL</ Keywords >
 <SRS>null </ SRS>
 <Operations >
 <Query />
 </ Operations >
 <LatLongBoundingBox minx =" -83.932197570801 " miny =" 25.363000869751 " maxx =" -
80.165802001953 " maxy =" 30.700000762939 "/>
 </ FeatureType >
 <FeatureType >
 <Name>sopac </ Name>
 <Title >SOPAC GPS Stations </ Title >
 <Abstract >Metadata About the SCIGN GPS station</ Abstract >
 <Keywords >California,Earthquake,WFS </ Keywords >

227

 <SRS>WGS84</ SRS>
 <Operations >
 <Query />
 </ Operations >
 <LatLongBoundingBox minx =" 32.84073385 " miny =" -118.33381483 "
maxx=" 33.9347574 " maxy =" -115.52137107 "/>
 </ FeatureType >
 </ FeatureTypeList >
 <ogc:Filter_Capabilities xmlns:ogc =" http://www.opengis.net/ogc ">
 <ogc:Spatial_Capabilities >
 <ogc:Spatial_Operators >
 <ogc:BBOX/>
 </ ogc:Spatial_Operators >
 </ ogc:Spatial_Capabilities >
 <ogc:Scalar_Capabilities >
 <ogc:Arithmetic_Operators >
 <ogc:Simple_Arithmetic />
 </ ogc:Arithmetic_Operators >
 </ ogc:Scalar_Capabilities >
 </ ogc:Filter_Capabilities >
</ WFS_Capabilities >

B.5 Sample Mapping File

Following XML mapping file is used by the WFS to map MySQL query results into

GML documents.

<?xml version="1.0" encoding="UTF-8"?>
<MapElements xmlns:xsi =" http:/SeismicEvent/www.w3.org/2001/XMLSchema-instance ">
 <MapElement No =" 0" XSDNodeXPath =" /SeismicEvent/Date/Year "
DBColumnName=" YEAR"></ MapElement >
 <MapElement No =" 1" XSDNodeXPath =" /SeismicEvent/Date/Month "
DBColumnName=" MONTH"></ MapElement >
 <MapElement No =" 2" XSDNodeXPath =" /SeismicEvent/Date/Day "
DBColumnName=" DAY"></ MapElement >
 <MapElement No =" 3" XSDNodeXPath =" /SeismicEvent/Time/Hour "
DBColumnName=" HOUR"></ MapElement >
 <MapElement No =" 4" XSDNodeXPath =" /SeismicEvent/Time/Minute "
DBColumnName=" MINUTE"></ MapElement >
 <MapElement No =" 5" XSDNodeXPath =" /SeismicEvent/Time/Second "
DBColumnName=" SECOND"></ MapElement >
 <MapElement No =" 5" XSDNodeXPath =" /SeismicEvent/EventType "
DBColumnName=" ET"></ MapElement >
 <MapElement No =" 6" XSDNodeXPath =" /SeismicEvent/Magnitude "
DBColumnName=" MAGNITUDE"></ MapElement >
 <MapElement No =" 7" XSDNodeXPath =" /SeismicEvent/MagnitudeType "
DBColumnName=" MAGNITUDE_TYPE"></ MapElement >
 <MapElement No =" 8"
XSDNodeXPath=" /SeismicEvent/Location/gml:Point/gml:coord/gml:X "
DBColumnName=" LATITUDE"></ MapElement >
 <MapElement No =" 9"
XSDNodeXPath=" /SeismicEvent/Location/gml:Point/gml:coord/gml:Y "
DBColumnName=" LONGITUDE"></ MapElement >
 <MapElement No =" 10" XSDNodeXPath =" /SeismicEvent/Depth "
DBColumnName=" DEPTH"></ MapElement >
 <MapElement No =" 11" XSDNodeXPath =" /SeismicEvent/Quality "
DBColumnName=" QUALITY"></ MapElement >
 <MapElement No =" 12" XSDNodeXPath =" /SeismicEvent/EventId "
DBColumnName=" EVID"></ MapElement >

228

 <MapElement No =" 13" XSDNodeXPath =" /SeismicEvent/NPH "
DBColumnName=" NPH"></ MapElement >
 <MapElement No =" 14" XSDNodeXPath =" /SeismicEvent/NGRM "
DBColumnName=" NGRM"></ MapElement >
</ MapElements >

B.6 Sample Feature Configuration File

Following configuration file is used by the WFS for obtaining database, schema and other

information about a feature.

<?xml version="1.0" encoding="UTF-8"?>
<feature >
 <db>
 <type >mySQL</ type >
 <serveraddress >gf8.ucs.indiana.edu </ serveraddress >
 <dbname>cce </ dbname>
 <tablename >scedc </ tablename >
 <driver >com.mysql.jdbc.Driver </ driver >
 <username >galip </ username >
 <password >password </ password >
 </ db>
 <xml_instance >
 <localaddress >C:/projects/newprojects/wfs-
streaming/xml/galip/seismicity/seismic_instance.xml </ localaddress >
 </ xml_instance >
 <map_file >
 <localaddress >C:/projects/newprojects/wfs-
streaming/xml/galip/seismicity/scedc_mapping.xml </ localaddress >
 </ map_file >
 <xmlschema >
 <localaddress >C:/projects/newprojects/wfs-
streaming/xml/schemas/seismicity.xsd </ localaddress >
 </ xmlschema >
 <maxmin_column_names >
 <minx >LONGITUDE</ minx >
 <miny >LATITUDE</ miny >
 <maxx>LONGITUDE</ maxx>
 <maxy>LATITUDE</ maxy>
 </ maxmin_column_names >
 <Metadata >
 <Name>scedc </ Name>
 <Title >California Earthquake Data in SCEDC Format </ Title >
 <Abstract >Earthquake data </ Abstract >
 <Keywords >California, Earthquake, WFS </ Keywords >
 <SRS>EPSG:4326</ SRS>
 <Operations >
 <Operation type =" Query "/>
 </ Operations >
 <MetadataURL >http://www.crisisgrid.org </ MetadataURL >
 </ Metadata >
</ feature >

B.7 Sample GML instance
Following file is used by the WFS to map MySQL query results into GML documents.

<?xml version="1.0" encoding="UTF-8"?>

229

<GPS_Site xmlns:gml =" http://www.opengis.net/gml "
xmlns:xsi =" http://www.w3.org/2001/XMLSchema-instance "
xsi:noNamespaceSchemaLocation =" C:\projects\wfs\schemas\GPS_Site.xsd ">
 <SiteCode ></ SiteCode >
 <SiteName ></ SiteName >
 <Network ></ Network >
 <City ></ City >
 <County ></ County >
 <State ></ State >
 <Location >
 <gml:Point srsName =" WGS84">
 <gml:coord >
 <gml:X ></ gml:X >
 <gml:Y ></ gml:Y >
 </ gml:coord >
 </ gml:Point >
 </ Location >
 <DataLink >
 <DataAddress type =" Streaming "></ DataAddress >
 <NBAddress >
 <NBHost ></ NBHost >
 <NBPort ></ NBPort >
 <NBTopic ></ NBTopic >
 </ NBAddress >
 </ DataLink >
</ GPS_Site >

230

Bibliography

1. [AHD], geography. (n.d.). The American Heritage® Dictionary of the English
Language, Fourth Edition. Retrieved November 05, 2006, from Dictionary.com
website: http://dictionary.reference.com/browse/geography.

2. Peng, Z.R. and M. Tsou, Internet GIS: Distributed Geographic Information
Services for the Internet and Wireless Networks. 2003: Wiley.

3. FGDC. The Federal Geographic Data Committee, Data & Services:
http://www.fgdc.gov/dataandservices. [cited.

4. Smith, T.R., A digital library for geographically referenced materials. Computer,
1996. 29(5): p. 54.

5. Zao Liu, Marlon Pierce, and G. Fox, Concurrent Web Map Cache Server,
Community Grids Lab Presentation, Available from
http://grids.ucs.indiana.edu/ptliupages/presentations/CacheServer.ppt. 2006.

6. ESRI, ArcIMS, 9 Architecture and Functionality, J-8694. ESRI White Paper,
http://downloads.esri.com/support/whitepapers/ims_/arcims9-architecture.pdf.
2004.

7. Autodesk. MapGuide http://usa.autodesk.com. [cited.
8. MapServer, W. http://www.wthengineering.com/GIS/web_gis.htm. [cited.
9. Inc, E., ESRI Shapefile Technical Description, An ESRI White Paper—July 1998.

1998, URL: http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf.
10. Cox, S., et al., Geography Markup Language (GML) 2.0, OpenGIS®

Implementation Specification, 20 February 2001, OGC Document Number: 01-
029. 2001.

11. GeoCommunity. Web Site: http://www.geocomm.com/, Last accessed on
12/17/2006. [cited.

12. Di, L., et al., The Integration of Grid Technology with OGC Web Services (OWS)
in NWGISS for NASA EOS Data, in GGF8 & HPDC12 2003: Seattle, USA. . p.
24-27.

13. Fox, G. and M. Pierce. Web Service Grids for iSERVO. in International Workshop
http://www.eps.s.u-tokyo.ac.jp/jp/COE21/events/20041014.pdf on Geodynamics:
Observation, Modeling and Computer Simulation University of Tokyo Japan
October 14 2004. 2004.

14. de La Beaujardiere, J., Web Map Service, OGC project document reference
number OGC 04-024. 2004.

15. Vretanos, P. (2002) Web Feature Service Implementation Specification, OpenGIS
project document: OGC 02-058, version 1.0.0. Volume,

16. Cox, S., et al. (2003) OpenGIS Geography Markup Language (GML)
Implementation Specification, OpenGIS project document reference number OGC
02-023r4, Version 3.0. Volume,

17. Sayar, A., M. Pierce, and G. Fox, OGC Compatible Geographical Information
Services, in Indiana Computer Science Report TR610. 2005.

18. Cox, S. (2003) Observations and Measurements. Volume, DOI: OGC 03-022r3
19. Butler, D., 2020 computing: Everything, everywhere. Nature, 2006. 440: p. 402-

405.

231

20. Gibbons, P.B., et al., IrisNet: an architecture for a worldwide sensor Web. IEEE,
Pervasive Computing, , 2003. 2(4): p. 22-33.

21. Akyildiz, I.F., et al., A Survey on Sensor Networks. IEEE Communications
Magazine, 2002.

22. Akyildiz, I.F., et al., Wireless sensor networks: a survey. 2002, Elsevier. p. 393-
422.

23. Estrin, D., et al. Next Century Challenges: Scalable Coordination in Sensor
Networks. in Fifth Annual International Conference on Mobile Computing and
Networks (MobiCOM '99). 1999. Seattle, Washington.

24. Mainwaring, A., et al., Wireless sensor networks for habitat monitoring. 2002,
ACM Press New York, NY, USA. p. 88-97.

25. Mainwaring, A., et al. Wireless sensor networks for habitat monitoring. in
Proceedings of the 1st ACM international workshop on Wireless sensor networks
and applications 2002: ACM Press New York, NY, USA.

26. Pottie, G.J. and W.J. Kaiser, Wireless integrated network sensors.
Communications of the ACM 2000. 43(5): p. 51-58.

27. Zerger, A. and D.I. Smith, Impediments to using GIS for real-time disaster
decision support. Computers, Environment and Urban Systems, 2003. 27(2): p.
123-141.

28. Reichardt, M., Sensor Web Enablement: An OGC White Paper. 2005, Open
Geospatial Consortium (OCG), Inc.

29. Fox, G., Grids of Grids of Simple Services. Computing in Science and Engg.,
2004. 6(4): p. 84-87.

30. Kelvin K. Droegemeier, et al. Linked environments for atmospheric discovery
(LEAD): A cyberinfrastructure for mesoscale meteorology research and
education. in 20th Conf. on Interactive Information Processing Systems for
Meteorology, Oceanography, and Hydrology, . 2004. Seattle, WA.

31. Beth Plale, et al., CASA and LEAD: Adaptive Cyberinfrastructure for Real-Time
Multiscale Weather Forecasting IEEE Computer, 2006. 39(11): p. 56-64.

32. Beth Plale, Rahul Ramachandran, and S. Tanner, Data Management Support for
Adaptive Analysis and Prediction of the Atmosphere in LEAD, in 22nd
Conference on Interactive Information Processing Systems for Meteorology,
Oceanography, and Hydrology (IIPS),. 2006.

33. Beth Plale, D.G., Jay Alameda, Bob Wilhelmson, Shawn Hampton, Al Rossi, and
Kelvin Droegemeier Active Management of Scientific Data. IEEE Internet
Computing, special issue on Internet Access to Scientific Data, 2005. 9(1): p. 27-
34.

34. Kelvin K. Droegemeier, et al., Linked environments for atmospheric discovery
(LEAD): Architecture, Technology Roadmap and Deployment Strategy, , in 21st
Conference on Interactive Information Processing Systems for Meteorology,
Oceanography, and Hydrology, . 2005.

35. Sgouros, T. (2004) A DODS Quick Start Guide Version 1.5, available from
http://www.opendap.org/user/quick-html/quick.html. Volume,

36. Cornillon, P., J. Gallagher, and T. Sgouros, OPeNDAP: Accessing data in a
distributed, heterogeneous environment. Data Science Journal, 2003. 2: p. 164-
174.

232

37. Sgouros, T. (2004) OPeNDAP User Guide Version 1.14, available from
http://www.opendap.org/user/guide-html/guide.html. Volume,

38. Braun, H.W., et al., Distributed Data Management Architecture for Embedded
Computing, in 6th Workshop on High Performance Embedded Computing. 2002:
MIT Lincoln Laboratory.

39. Harvey, D., et al., ORB: A New Real-Time Data Exchange and Seismic
Processing System. Seis. Res. Lett. , 1998. 69.

40. Rajasekar, A., et al., Virtual Object Ring Buffer: A Framework for Real-time Data
Grid., in HDPC Conference 2004. 2004.

41. Bustamante, F.E., The Active Streams Approach to Adaptive Distributed
Applications and Services, in Computer Science. 2001, Georgia Institute of
Technology. p. 112.

42. Bustamante, F.E., G. Eisenhauer, and K. Schwan. The Active Streams Approach
to Adaptive Distrubuted Systems. in 10th IEEE International Symposium on High
Performance Distributed Computing (HPDC-10 '01), 2001. 2001.

43. Eisenhauer, G., K. Schwan, and F.E. Bustamante, Publish-subscribe for high-
performance computing. IEEE Internet Computing, 2006. 10(1): p. 40-47.

44. Isert, C. and K. Schwan. ACDS: Adapting computational data streams for high
performance. in 14th International Parallel & Distributed Processing Symposium
(IPDPS'00), . 2000. Cancun, Mexico: IEEE Computer Society 2000

45. Plale, B. and K. Schwan, dQUOB: Managing Large Data Flows Using Dynamic
Embedded Queries, in Ninth IEEE International Symposium on High
Performance Distributed Computing (HPDC-9 '00). 2000. p. 263.

46. Vijayakumar, N. and B. Plale, dQUOBEC event channel communication system.
2005, Indiana University, Computer Science, Technical Report TR614.

47. Plale, B. and K. Schwan, Dynamic querying of streaming data with the dQUOB
system. IEEE Transactions on Parallel and Distributed Systems, 2003. 14(4): p.
422-432.

48. Bustamante, F., et al. Efficient wire formats for high performance computing. in
ACM/IEEE SC 2000 Conference (SC'00). 2000.

49. Liu, Y., N.N. Vijayakumar, and B. Plale. Stream Processing in Data-Driven
Computational Science. in 7th IEEE/ACM Int’l Conference Grid Computing,
Grid'06. 2006. Barcelona, S.

50. Vijayakumar, N., Y. Liu, and B. Plale. Calder Query Grid Service: Insights and
Experimental Evaluation. in Sixth IEEE International Symposium on Cluster
Computing and the Grid (CCGRID'06). 2006.

51. Golab, L. and M.T. Özsu, Issues in data stream management. ACM SIGMOD
Record, 2003. 32(2): p. 5-14.

52. Chandrasekaran, S., et al. TelegraphCQ: continuous dataflow processing. in 2003
ACM SIGMOD international conference on Management of data 2003. San
Diego, California ACM Press New York, NY, USA.

53. Chandrasekaran, S., et al. TelegraphCQ: Continuous dataflow processing for an
uncertain world. in First Biennial Conference on Innovative Data Systems
Research (CIDR). 2003. Asilomar, CA, USA.

54. Avnur, R. and J.M. Hellerstein, Eddies: continuously adaptive query processing.
ACM SIGMOD Record 2000. 29(2): p. 261-272.

233

55. Babcock, B., et al. Models and issues in data stream systems. in Proceedings of
the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems 2002: ACM Press New York, NY, USA.

56. Plale, B., Using global snapshots to access data streams on the grid. 2004.
3165(3165): p. 191-201.

57. Plale, B., Framework for bringing data streams to the grid. Scientific
Programming 2004. 12(4): p. 213-223.

58. Granat, R., Regularized Deterministic Annealing EM for Hidden Markov Models,
in University of California Los Angeles. 2004.

59. Rabiner, L.R., A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition. Proceedings of the IEEE, 1989. 77(2): p. 257–286.

60. Granat, R.A., A method of hidden Markov model optimization for use with
geophysical data sets. Comp. Sci., 2003(2659): p. 892–901.

61. Granat, R.A., Statistical Analysis of Geodetic Networks for Detecting Regional
Events, in 4th International ACES Workshop. 2004: Beijing, China 2004.

62. Holliday, J.R., et al., A RELM earthquake forecast based on pattern informatics,
in AGU Fall Meeting;. 2005: San Francisco, California,.

63. Rundle, J.B., D.L. Turcotte, and R. SHCHERBAKOV, KLEIN, W., AND
SAMMIS, C. , Statistical physics approach to understanding the multiscale
dynamics of earthquake fault systems. . Rev. Geophys. , 2003. 41(4).

64. Rundle, J.B., et al., Self-organization in leaky threshold systems: The influence of
near-mean field dynamics and its implications for earthquakes, neurobiology, and
forecasting. . Proc. Natl. Acad. Sci. U. S. A. , 2002. 99: p. 2514-2521.

65. Tiampo, K.F., Rundle, J. B., McGinnis, S. A., & Klein, W., , Pattern dynamics
and forecast methods in seismically active regions. Pure and Applied Geophysics
(PAGEOPH), 2002(159): p. 2429-2467

66. Tiampo, K.F., Rundle, J. B., McGinnis, S. A., Gross, S. J. & Klein, W.,,
Eigenpatterns in southern California seismicity. . J. Geophys. Res. , 2002.
107(B12): p. 2354.

67. K. Z. Nanjo, J.R.H., C. C. Chen, J. B. Rundle, and D. L. Turcotte. , Application of
a modified Pattern Informatics method to forecasting the locations of future large
earthquakes in the central Japan, . Tectonophysics, 2006. 424: p. 351-366.

68. Sayar, A., M. Pierce, and G.C. Fox, DEVELOPING GIS VISUALIZATION WEB
SERVICES FOR GEOPHYSICAL APPLICATIONS in ISPRS International
Society for Photogrammetry and Remote Sensing Workshop Commission II WG/2
2005: METU, Ankara, Turkey.

69. Sayar, A., et al., Developing a Web Service-Compatible Map Server for
Geophysical Applications available from
http://grids.ucs.indiana.edu/ptliupages/publications/acm-gis-sayar.pdf. 2005.

70. Bush, B.W. and J.H. P. Giguere, S. Linger, A. McCown, M. Salazar, C. Unal, D.
Visarraga, K. Werley, R. Fisher, S. Folga, M. Jusko, J. Kavicky, M. McLamore,
E. Portante, S. Shamsuddin, NISAC ENERGY SECTOR: Interdependent Energy
Infrastructure Simulation System (IEISS), in NISAC Capabilities Workshop. 2003:
Portland, OR.

71. Thomas W. Meyer, et al., The Los Alamos Center for Homeland Security. LOS
ALAMOS SCIENCE, 2003. 28.

234

72. Hashimi, S., Service-Oriented Architecture Explained. 2004, O’Reilly
http://dev2dev. bea. com/technologies/soa/articles/soa_hashimi, jsp, Apr.

73. Eugster, P.T.H., et al., The Many Faces of Publish/Subscribe. 2003. p. 114-131.
74. Cox, S., Observations and Measurements. 2002. p. 02-027.
75. Botts, M., Sensor model language (SensorML) for in-situ and remote sensors

specification. 2002, discussion paper 02-026r4, Open GIS Consortium.
http://www. opengis. org/techno/discussions/02-026r4. pdf.

76. OGC, The Open Geospatial Consortium, Inc, http://www.opengeospatial.org/.
77. Aydin, G., et al. SERVOGrid Complexity Computational Environments (CCE)

Integrated Performance Analysis. in Grid Computing, 2005. The 6th IEEE/ACM
International Workshop on. 2005: IEEE.

78. Christensen, E., et al., Web Services Description Language (WSDL) 1.1. 2001,
March.

79. Belwood, T., L. Clement, and C. von Riegen, UDDI Version 3.0.1: UDDI Spec
Technical Committee Specification. Available from http://uddi.org/pubs/uddi-
v3.0.1-20031014.htm. 2003.

80. CGL. Community Grids Lab Web Site http://communitygrids.iu.edu/index.php.
[cited.

81. Aktas, M., et al., Information Services for Grid/Web Service Oriented
Architecture (SOA) Based Geospatial Applications.

82. Aktas, M., et al., Web Service Information Systems and Applications in GGF-16
Global Grid Forum Semantic Grid Workshop 2006: Athens, Greece.

83. Aktas, M., G. Fox, and M. Pierce. Managing Dynamic Metadata as Context. in
Istanbul International Computational Science and Engineering Conference
(ICCSE2005 http://www.iccse.org/) June 2005. 2005.

84. Aktas, M., G. Fox, and M. Pierce, An Architecture for Supporting Information in
Dynamically Assembled Semantic Grids. 2005.

85. Aktas, M., G. Fox, and M. Pierce. Information Services for Dynamically
Assembled Semantic Grids. in Proceedings of 1st International Conference
http://kg.ict.ac.cn/SKG2005/ on SKG2005 Semantics, Knowledge and Grid
Beijing China November 27-29 2005. 2005.

86. Aktas, M.S., G.C. Fox, and M. Pierce, Fault tolerant high performance
Information Services for dynamic collections of Grid and Web services. Future
Generation Computer Systems, 2007. 23(3): p. 317-337.

87. MySql, A.B., MySQL Database Server, WWW page, at URL: http://www. mysql.
com, last accessed on 12/17/2006.

88. Kreger, H., Web Services Conceptual Architecture (WSCA 1.0). 2001. p. 6-7.
89. Redmond, F.E., Dcom: Microsoft Distributed Component Object Model with

Cdrom. 1997: IDG Books Worldwide, Inc. Foster City, CA, USA.
90. Microsystems, S., Java Remote Method Invocation Specification. 2002.
91. Kirtland, M., A Platform for Web Services. 2001, Jan.
92. Box, D., et al., Simple Object Access Protocol (SOAP) 1.1. W3C Note 08 May

2000.
93. ISO/TC211. Web Site http://www.isotc211.org. [cited.
94. Fallside, D.C. and P. Walmsley, XML Schema W3C Recommendation 28 October

2004, http://www.w3.org/TR/xmlschema-0/. 2001. p. 2002-10.

235

95. Vretanos, P.A., Filter Encoding Implementation Specification. OGC 02-059. Ver
1.0. 0. 2001. p. 02-059.

96. Rao, A.P., et al., Overview of the OGC catalog interface specification. 2000.
97. Grant, L.B., et al., QuakeTables: The Fault Database for QuakeSim. 2004.
98. Fox, G. and M. Pierce, SERVO Earthquake Science Grid, in summary of iSERVO

technology October 2004 in January 2005 report High Performance Computing
Requirements for the Computational Solid Earth Sciences http://www.geo-
prose.com/computational_SES.html edited by Ron Cohen and started at May
2004 workshop on Computational Geoinformatics.

99. Donnellan, A., et al., Numerical simulations for active tectonic processes:
increasing interoperability and performance.

100. JPL. GPS Data Files available from ftp://sideshow.jpl.nasa.gov/pub/mbh, last
visited on 12/17/2006. [cited.

101. SOPAC, GPS Time Series available from ftp://garner.ucsd.edu/pub/timeseries,
last visited 12/17/2003.

102. USGS, GPS Time Series available from
http://pasadena.wr.usgs.gov/scign/Analysis/plotdata/, last visited 12/17/2006.

103. SCSN, format seismic records, available from
http://www.data.scec.org/ftp/catalogs/SCSN/, last visited 12/17/2006.

104. SCEDC, format seismic records, available from
http://www.data.scec.org/ftp/catalogs/SCEC_DC, last visited 12/17/2006.

105. Dinger-Shearer, format seismic records, avilable from
http://www.data.scec.org/ftp/catalogs/dinger-shearer/, last visited 12/17/2006.

106. Haukkson, format seismic records available from
http://www.data.scec.org/ftp/catalogs/hauksson/, last visited 12/17/2006.

107. Appel, V.L. and R.W. Clayton, The Southern California Earthquake Data Center
(SCEDC): Update for 2004. 2004.

108. Clark, J. and S. DeRose, XML Path Language (XPath) Version 1.0. 1999. p. 1999.
109. OGC OGC Filter Encoding Implementation Specification, OGC document

number 04-095 Volume,
110. Pallickara, S. and G. Fox. NaradaBrokering: A Middleware Framework and

Architecture for Enabling Durable Peer-to-Peer Grids. in Lecture Notes in
Computer Science. 2003: Springer-Verlag.

111. Fox, G. Global multimedia collaboration system. in Collaborative Technologies
and Systems, 2005. Proceedings of the 2005 International Symposium on. 2005.

112. Uyar, A., et al. Service-Oriented Architecture for a Scalable Videoconferencing
System. in Proceedings of IEEE International Conference on Pervasive Services
2005 (ICPS'05) http://icps2005.cs.ucr.edu/ July 2005, Santorini, Greece. 2005.

113. Uyar, A., Scalable service oriented architecture for audio/video conferencing.
2005, Syracuse.

114. Bush, B.W., NISAC Interdependent Energy Infrastructure Simulation System,
Report LA-UR-04-7700,. 2004, Los Alamos National Laboratory.

115. OnEarth, NASA OnEarth Web Map Service for global satellite images, available
at http://onearth.jpl.nasa.gov/.

116. Gaia, GIS Viewer, http://www.thecarbonportal.net/.

236

117. Gadgil, H., et al., Management of Data Streams for a Real Time Flood
Simulation. 2004.

118. Gadgil, H., G. Fox, and S. Pallickara. HPSearch for Managing Distributed
Services. in Work in Progress session at IEEE/ACM Cluster Computing and Grid
2005 Conference (CCGrid 2005 http://www.cs.cf.ac.uk/ccgrid2005/). Cardiff,
UK May 2005. 2005.

119. Gadgil, H., et al. A Scripting based Architecture for Management of Streams and
Services in Real-time Grid Applications. in Proceedings of the IEEE/ACM Cluster
Computing and Grid 2005 Conference (CCGrid 2005). Cardiff, UK May 2005.
2005.

120. Gadgil, H., et al., HPSearch: Service Management & Administration Tool, in
Abstract for VLAB Meeting Minnesota July 21-23 2005. 2005.

121. Davis, D. and M.P. Parashar, Latency Performance of SOAP Implementations, in
Cluster Computing and the Grid, 2002. 2nd IEEE/ACM International Symposium
on. 2002. p. 407-407.

122. Kohlhoff, C. and R. Steele, Evaluating SOAP for High Performance Business
Applications: Real-Time Trading Systems, in In proceedings of the 2003
International WWW Conference,. 2003: Budapest, Hungary. p. 03-2002.

123. van Engelen, R. Constructing Finite State Automata for High-Performance XML
Web Services. in International Symposium on Web Services and Applications
(ISWS) 2004. 2004.

124. van Engelen, R.A. Pushing the SOAP envelope with Web services for scientific
computing. in In proceedings of the International Conference on Web Services
(ICWS),. 2003. Las Vegas, 2003.

125. Chiu, K., M. Govindaraju, and R. Bramley. Investigating the limits of SOAP
performance for scientific computing. in High Performance Distributed
Computing, 2002. HPDC-11 2002. . 2002: IEEE

126. Goldman, O., XML Binary Characterization, W3C Working Group Note, Mar,
2005 2005.

127. Gudgin, M., et al., SOAP Message Transmission Optimization Mechanism, W3C
Proposed Recommendation, Nov, 2004. 2004.

128. Gudgin, M., et al., XML-binary Optimized Packaging, W3C Recommendation,
Jan, 2005. 2005.

129. Liefke, H. and D. Suciu. XMill: an efficient compressor for XML data. in ACM
SIGMOD international conference on Management of data, 2000 2000: ACM
Press New York, NY, USA.

130. Oh, S., et al. Optimized communication using the SOAP infoset for mobile
multimedia collaboration applications. in Collaborative Technologies and
Systems, 2005. Proceedings of the 2005 International Symposium on. 2005.

131. Oh, S. and G. Fox, HHFR: A new architecture for Mobile Web Services:
Principles and Implementations. 2005.

132. Pericas-Geertsen, S. Binary interchange of XML infosets. in XML Conference &
Exposition 2003. 2003. Pennsylvania Conventin Center, Philadelphia, PA, USA.

133. Sandoz, P. and K.K. Santiago Pericas-Geertsen, Marc Hadley, and Eduardo
Pelegri-Llopart,, Fast Web Service, available from

237

http://java.sun.com/developer/technicalArticles/WebServices/fastWS/ last visited
12/17/2006.

134. Sandoz, P., A. Triglia, and S. Pericas-Geertsen. Fast Infoset, article available
from http://java.sun.com/developer/technicalArticles/xml/fastinfoset/. 2004
[cited.

135. Govindaraju, M., et al. Requirements for and Evaluation of RMI Protocols for
Scientific Computing. in Proceedings of the IEEE/ACM SC2000 Conference
(SC’00). 2000. Dallas, TX, 2000

136. Lim, S., et al. GridFTP and Parallel TCP Support in NaradaBrokering. in
Proceedings of 6th International Conference on Algorithms and Architectures for
Parallel Processing ICA3PP 2005
http://www3.it.deakin.edu.au/ica3pp2005/index.php?id=Home Melbourne
Australia. October 2-5 2005. 2005: Springer-Verlag.

137. Bayardo, R.J., et al. An evaluation of binary xml encoding optimizations for fast
stream based xml processing. in WWW2004, May 17–22, 2004, New York, New
York, USA. 2004: ACM Press New York, NY, USA.

138. W3C, Report From the W3C Workshop on Binary Interchange of XML
Information Item Sets, 24th, 25th and 26th September, 2003, Santa Clara,
California, USA. Available from http://www.w3.org/2003/08/binary-interchange-
workshop/Report.html.

139. W3C. XML Binary Characterization Working Group, Web Page
http://www.w3.org/XML/Binary/. [cited.

140. Chiu, K. XBS: A Streaming Binary Serializer for High Performance Computing.
in In Proceedings of the High Performance Computing Symposium 2004, April
2004. 2004.

141. Hoschek, W., A Quantitative Comparison of Binary XML Encodings,
Presentation at GridWorld / Global Grid Forum 15, Boston, Oct 200, available
from http://dsd.lbl.gov/DSDlocal/DSDMeetings/ggf15-binaryXML.pdf. 2005.

142. NUX. Web Site http://dsd.lbl.gov/nux/. [cited.
143. Chong, C.Y., S.P. Kumar, and B.A. Hamilton, Sensor networks: evolution,

opportunities, and challenges. Proceedings of the IEEE, 2003. 91(8): p. 1247-
1256.

144. Delin, K.A., The Sensor Web: A Macro-Instrument for Coordinated Sensing.
Sensors, 2002 2002. 2(1): p. 270–285.

145. Delin, K.A. and S.P. Jackson, The Sensor Web: A New Instrument Concept. 2001.
p. 20-26.

146. Martinez, K., J.K. Hart, and R. Ong, Environmental sensor networks. 2004. p. 50-
56.

147. Estrin, D., et al., Next century challenges: scalable coordination in sensor
networks. 1999, ACM Press New York, NY, USA. p. 263-270.

148. Hudnut, K.W., et al., The Southern California Integrated GPS Network (SCIGN).
2002. p. 167–189.

149. Yamagiwa, A., Y. Bock, and J. Genrich. Real-time monitoring of crustal
deformation using large GPS geodetic networks-Japanese GEONET's potential as
a natural hazards mitigation system. in American Geophysical Union, Fall
Meeting 2004, abstract #SF53A-0724. 2004.

238

150. Cardell-Oliver, R., et al., A Reactive Soil Moisture Sensor Network: Design and
Field Evaluation. International Journal of Distributed Sensor Networks, 2005
2005. 1(2): p. 149-162.

151. Raicu, I. Efficient Even Distribution of Power Consumption in Wireless Sensor
Networks. in ISCA 18th International Conference on Computers and Their
Applications, CATA 2003, 4 pages. 2004. Honolulu, Hawaii, USA.

152. Berfield, A., P.K. Chrysanthis, and A. Labrinidis. Automated Service Integration
for Crisis Management. in First Workshop on Databases In Virtual Organizations
(DIVO 2004), available from
http://dais.cs.uiuc.edu/divo2004/proceedings/divo04-berfield.pdf. 2004.

153. Goldammer, J.G. Early warning systems for the prediction of an appropriate
response to wildfires and related environmental hazards. in Health Guidelines for
Vegetation Fire Events,. 1998. Lima, Peru, .

154. Allen, R.M. and H. Kanamori, The Potential for Earthquake Early Warning in
Southern California. Science 2003. 300(5620): p. 786-789.

155. Fox, G.C. and D. Gannon, Workflow in Grid Systems. Concurrency and
Computation: Practice and Experience, 2006. 18(10): p. 1009-1019.

156. Oinn, T., et al., Taverna: Lessons in creating a workflow environment for the life
sciences. Concurrency and Computation: Practice and Experience, 2006. Volume
18(10): p. 1067 - 1100.

157. Bock, Y., et al., Scripps Orbit and Permanent Array Center (SOPAC) and
Southern Californian Permanent GPS Geodetic Array (PGGA). 1997, National
Academy Press. p. 55–61.

158. PBO, THE PLATE BOUNDARY OBSERVATORY. Creating a Four-Dimensional
Image of the Deformation of Western North America. A PBO White Paper,
available from
http://www.unavco.org/pubs_reports/proposals/PBOwhitepaper.pdf.

159. Hudnut, K.W., et al. THE SOUTHERN CALIFORNIA INTEGRATED GPS
NETWORK (SCIGN). in The 10th FIG International Symposium on Deformation
Measurements. 2001. Orange, California, USA.

160. Bock, Y., L. Prawirodirdjo, and T.I. Melbourne, Detection of arbitrarily large
dynamic ground motions with a dense high-rate GPS network. GEOPHYSICAL
RESEARCH LETTERS, 2004. 31.

161. Apache, X.M.L., Beans Project, http://xmlbeans.apache.org/. 2003.
162. Paulson, L.D., Building rich web applications with Ajax. IEEE Computer, 2005.

38(10): p. 14-17.

