

An Efficient Scheme for Aggregation and Presentation of
Network Performance in Distributed Brokering Systems

Gurhan Gunduz

ggunduz@syr.edu
Department of Electrical Engineering & Computer Science, Syracuse University

Syracuse, NY 13244

 Shrideep Pallickara and Geoffrey Fox
{spallick and gcf} @indiana.edu

Community Grid Labs, Indiana University
Bloomington, IN 47404

ABSTRACT

The Internet is presently being used to support increasingly
complex interaction models as a result of more and more
applications, services and frameworks becoming network
centric. Efficient utilization of network and networked-
resources is of paramount importance. Network performance
gathering is a precursor to any scheme that seeks to provide
adaptive routing capabilities for interactions. In this paper we
present a network performance aggregation framework that is
extensible and appropriate for distributed messaging systems
that span multiple realms, disparate communication protocols
and support different applications.

Keywords: performance aggregation, network monitoring,
distributed messaging, performance forecasting, publish
/subscribe systems.

1. INTRODUCTION

The predominantly passive interaction model, with interactions
initiated by clients and driven by web servers running on the
ubiquitous port 80, though still accounting for a large share of
the data being routed to clients has found its share reduce
considerably. The Internet is presently being used to support
increasingly complex interaction models as a result of more and
more applications, services and frameworks becoming network
centric. The entities, with which applications and services need
to interact, span a very wide spectrum that includes desktops,
PDAs and other handheld devices, appliances, and other
networked resources. Furthermore, supported clients have
transient connection semantics and are themselves originators of
voluminous content.

Services are usually implemented on a distributed network of
routing nodes, with each routing node making decisions
regarding the route requests or responses take en route to their
final destination(s). The processing and servicing of requests is
itself a distributed problem that involves several nodes and the
links that connect them. As the scale of the system increases
effective interactions between clients and services, in these
settings, is dictated not just by the processing power of the
nodes hosting a specific service but also by the network cycles
expended during these interactions.

Network usage has generally not been metered, at least not in
terms of network accesses and the amount of bytes that have
been sent over communication channels. Service providers

relying on faster processors have ignored premiums associated
with network utilizations. Under conditions of high load, visible
degradations in response times are attributed to network
clogging (a feature out of hands-on control) and it is expected
that these response-times would improve either due to an
attenuation of network traffic or due to advances (long-term) in
networking technology.

Moore’s law while ensuring that the nodes in the network fabric
would be more and more powerful provides no such solace as
far as network usage goes. Bandwidths, though they will
improve (at comparatively lower rates), would always be
outstripped by demand. Furthermore, depending on the
popularity of the service, there is seldom any attenuation in the
network traffic directly controlled by the service.

Poor solutions to network utilizations lead to buffer overflows,
queuing delays, network clogging and other related problems
that add up considerably over a period of time. Straitjacketing
clients by allowing a fixed set of accesses, preventing certain
types of interactions, limiting the type of content that is routed
to them or even restricting accesses to a fixed number of clients
is not the solution.

Although multicasting and bandwidth reservation protocols
such as RSVP [1] and ST-II [2] can help in better utilizing the
network they require support at the router level, more conceited
effort is need at higher levels. There needs to be a conceited
effort to ensure the efficient utilization of networks and
networked resources. The onus of providing an efficient service
that takes network conditions into account rests with the
middleware.

The middleware thus has to ensure that its routing strategy
adapts to changing network conditions, while eschewing
decisions that lead to congestion and concomitant problems. To
arrive at such intelligent decisions what is needed is the ability
to snapshot the state of middleware network fabric, which is a
precursor to empowering routing solutions. We may enumerate
issues to be addressed within the distributed middleware
pertaining to gathering this network state:

1. Link Metrics: This pertains to the ability to measure

performance metrics on communication links originating
from a node.

2. Non-intrusive measurements: Information should be
gathered on each communication link in such a way that
the measurements do not cloud the metric being measured
in the first place.

3. Protocol and metric independence: The communication
links should not be constrained to work with any specific
transport protocol. Also, communication links will report
different performance metrics.

4. Accumulating link metrics: A node should be able to
expose all the performance metrics accumulated over all
the communication links originating from that node.

5. Aggregation of node metrics: Performance aggregator
instances would aggregate performance information from
multiple nodes (usually from a certain realm) and thus
provide information regarding the state of the fabric at that
realm.

6. Support for multiple aggregator instances: The entire
distributed middleware would possibly span multiple
domains and realms controlled by different administrators.
It is entirely conceivable that administrators of certain
realm would restrict access to performance metrics
gathered within its realm. Routing within the realm would
then be done by metrics aggregated within that realm.

7. Assimilate performance data from other services: Ability
to integrate information from other network monitoring
services is also needed. Different networking monitoring
services measure different metrics, which could also be
used in arriving at better decisions.

8. Knowledge Discovery: The aggregated performance
information should be amenable to discovering information
that would aid routing algorithms.

9. Reporting scheme: Network administrators should be able
to specify thresholds on specific or a combination of
performance metrics. A reporting scheme would then alert
administrators when these thresholds have been reached.

We base our investigations, for providing a performance
aggregation framework, on our advanced research prototype
NaradaBrokering [20-28]. The smallest unit of this messaging
infrastructure is able to intelligently process and route messages
while working with multiple underlying communication
protocols. We refer to this unit as a broker, where we avoid the
use of the term servers to distinguish it clearly from the
application servers that would be among the sources/sinks to
messages processed within the integrated system comprising the
messaging infrastructure and applications. For our purposes
(registering, transporting and discovering information), we use
the term events/messages interchangeably where events are just
messages − typically with time stamps. NaradaBrokering
provides an interesting test bed for our investigations since it
supports traditional client-server, distributed and peer-to-peer
(P2P) [3] interactions. Current research in NaradaBrokering is
also focused on deploying the distributed brokering system to
federate multiple service realms, which provides Grid based
services or traditional Web services. In addition to the reasons
enumerated earlier, the performance aggregation infrastructure
needs to be in place in NaradaBrokering for reasons itemized
below:

1) State of realms: NaradaBrokering infrastructure would

span multiple realms. Having an aggregation infrastructure
in place would allow us to track the state of different
realms. The state of the broker network, in a certain realm,
provides an excellent indicator of the state of that realm.

2) Deployment of interactions: NaradaBrokering supports
different types of interactions, some of which are funneled
through the broker network and some of which are P2P
interactions over the edge of the network. These
interactions are fundamentally different, and utilize
networks differently. Based on the state of the network

reflected in the aggregation framework, decisions can be
made regarding the deployment of different types of
interactions.

3) Best available broker: NaradaBrokering provides users
with access transparency, where services hosted on the
brokering system can be accessed from any broker. The
aggregated information can be used to identify the best
available broker node, within a realm, that a client could
connect to.

4) Application specific support: NaradaBrokering has been
deployed to support real time audio/video conferencing
and also in distance education based collaboration systems.
Different applications utilize networks and transport
protocols in different ways. Knowledge of the state of the
network is a precursor to deploying transports efficiently
for different applications.

The remainder of this paper provides details pertaining to
implementing the aggregation service within the distributed
NaradaBrokering system. This paper is organized as follows.
Section 2 provides an overview of the related work in this area.
In section 3 we provide an overview of the NaradaBrokering
System. In section 4 we outline the NaradaBrokering transport
framework. The transport framework should be such that it
abstracts transport details while ensuring that each link is
amenable to performance monitoring. The transport framework
is crucial to enabling performance monitoring/aggregation and
incorporating strategies to alleviate network congestion. Details
pertaining to performance aggregation and monitoring are
discussed in section 5. Finally, we outline future work that
would build on the work described in this paper.

2. RELATED WORK

There are many efforts in the area of Internet measurement. IP
Provider Metrics, which is a subgroup of IETF’s Bench
Marking Working Group (BMWG), is trying to develop a set of
standard metrics that can be applied to the quality, performance
and reliability of Internet data delivery services [4]. Cooperative
Association for Internet Data Analysis (CADIA) [5], a
collaborative effort in engineering and maintenance of the
Internet, provides and analyses measurement tools currently
available. The Network Weather System (NWS) [6, 7] collects
end-to-end throughput and latency information and uses that
information to forecast future performance. Metrics are
collected by sensors, which are organized as a hierarchy of
sensor sets called cliques in order to prevent contention and also
to provide scalability. The measurement intervals can be
adjusted so that intrusiveness is limited while ensuring
scalability. The sensor interface in NWS is designed such that it
can easily incorporate data from other network performance
tools. In addition to network metrics, collected over the TCP/IP
transport protocol, NWS also accumulates CPU and available
non-paged memory information from various nodes.

In [8, 9] congestion and bandwidth of the links are measured by
actively probing the network between designated hosts. The two
tools deployed for achieving this are bprobe and cprobe.
Bprobe measures the maximum possible bandwidth along the
bottleneck link of a given path, while Cprobe estimates the
current congestion along the same path. All measurements are
non-intrusive.

Remos [10] provides a query based interface for applications to
obtain information about their execution environment including

network state. Remos maintains both static and dynamically
changing information and is based on SNMP measurements on
the router nodes in the network. It has two main components, a
collector and a modeler. The collector process in Remos
retrieves information from routers using SNMP, while the
modeler is a library that satisfies application requests based on
the information provided by Collector. Remos’ API for
accessing the information is similar to that provided by Globus
MDS [11] and Legion Resource Directory [12] but mostly
focused on network information.

Topology-d [13] is a service which periodically computes end-
to-end latency and available bandwidth and uses that
information to estimate the state of the network and the
networked resources. Topology-d computes the logical topology
of a set of internet nodes and conducts a series of performance
experiments (TCP, UDP). The gathered performance data is
then used to provide resource scheduling mechanisms such as
AppLeS [14], SmartClients [15] and MARS [16]. The
performance graph Topology-d produces is calculated relatively
infrequently (once per hour). Netperf [17] is a throughput
measurement tool. TReno [18] is another measurement tool
which tries to measure bulk transfer capacity of network links.
Pathchar [19] is a tool for internet performance monitoring and
analysis.

3. NARADABROKERING

To address the issues [27] of scaling, load balancing and failure
resiliency, NaradaBrokering [20-28] is implemented on a
network of cooperating brokers. Brokers can run either on
separate machines or on clients, whether these clients are
associated with users or resources. This network of brokers will
need to be dynamic since we need to service the needs of
dynamic clients. The distributed cluster architecture in
NaradaBrokering results in the creation of small-world [29, 30]
networks which allows us to support large heterogeneous client
configurations that scale to arbitrary size.

Communication within NaradaBrokering is asynchronous and
the system can be used to support different interactions by
encapsulating them in specialized events. Clients reconnecting
after prolonged disconnects, connect to the local broker instead
of the remote broker that it was last attached to. This eliminates
bandwidth degradations caused by heavy concentration of
clients from disparate geographic locations accessing a certain
known remote broker over and over again.

NaradaBrokering goes beyond other operational
publish/subscribe systems [34-39] in many ways (support for
Java Message Service (JMS) [31], P2P interactions, audio-video
conferencing, communication through firewalls among others).
Grid Services (including NaradaBrokering) being deployed in
the context of Earthquake Science can be found in [25].
NaradaBrokering supports both JMS and JXTA [32, 33] (from
juxtaposition), which are publish/subscribe environments with
very different interaction models. In addition to this
NaradaBrokering provides support for RTP (A Transport
Protocol for Real-Time Applications) [40], which allows it to
support audio/video conferencing for RTP clients.

4. NARADABROKERING’S TRANSPORT
FRAMEWORK

Here we consider the communication subsystem, which
provides the messaging between the resources and services.
Distributed messaging infrastructures thus must manage
communication between external resources, services and clients
to achieve the highest possible system performance and
reliability. We suggest that we only need solve this problem
“once” i.e. that all communication – whether TCP/IP, UDP,
RTP, RMI, XML/SOAP [41] or you-name-it be handled by a
single messaging or event subsystem. In the distributed
NaradaBrokering setting it is expected that when an event
traverses an end-to-end channel across multiple broker hops or
links the underlying transport protocols deployed for
communications would vary. The NaradaBrokering Transport
framework aims to abstract the operations that need to be
supported for enabling efficient communications between
nodes. These include support for:

1. Allowing easy addition of transport protocols within the

framework.
2. Allowing for deployments of specialized links to deal with

specific data types.
3. Negotiating the best available communication protocol

between two nodes
4. Allowing for adaptability in communications by

responding to changing network conditions.
5. Accumulating performance data measured by different

underlying protocol implementations.

Operations that need to be supported between two
communication endpoints are encapsulated within the “link”
primitive in the transport framework. The adaptability in
communications is achieved by specifying network constraints
and conditions under which to migrate to another underlying
protocol. For e.g. a UDP link may specify that when the loss
rates increase substantially communication should revert to
TCP. Though there is support for this adaptability in the
transport framework, this feature is not yet implemented in the
current release. Figure 1 provides an overview of the
NaradaBrokering transport framework.

TCP, UDP, Multicast, SSL, HTTP and RTP based
implementations of the transport framework are currently
available in NaradaBrokering. It is also entirely conceivable that
there could be a JXTA link, which will defer communications to
the underlying JXTA pipe mechanism. NaradaBrokering can
also tunnel through firewalls such as Microsoft’s ISA [42] and
Checkpoint [43] and proxies such as iPlanet [44]. The user
authentication modes supported include Basic, Digest and
NTLM. A comprehensive discussion of the NaradaBrokering
transport framework can be found in Ref [45].

A Link is an abstraction that hides details pertaining to
communications. A link has features, which allow it to specify a
change in the underlying communications and the conditions
under which to do so. An implementation of the Link interface
can incorporate its own handshaking protocols for setting up
communications. The Link also contains methods, which allow
for checking the status of the underlying communication
mechanism at specified intervals while reporting
communication losses to the relevant error handlers within the
transport framework.

Link
Performance

Data

Transport
Handler

Link
FactoryLink

Factory

Specific to a transport

Link Monitors

Broker
node

Transport
Interfaces

Broker
node

Monitoring
Service

Optimal Transport(Negotiated with info exchanged
over administrative link)

Administrative Link(HTTP)
Alternate Link(application and content dependent)

Link

Data Accumulated by
Monitoring Service

Figure 1: Transport Framework Overview

Each implementation of the Link interface can expose and
measure a set of performance factors. Measurement of
performance factors over a link requires cooperation from the
other end-point of the communication link; this particular detail
should be handled within the Link implementation itself. How
the Link implementation computes round trip delays, jitter
factors, bandwidth, loss rates etc. should be within the domain
of the implementer. The Link also has methods which
enable/disable the measurement of these performance factors.
Links expose the performance related information in the
LinkPerformanceData construct using which it is possible to
retrieve information (type, value, description) pertaining to the
performance factors being measured.

5. PERFORMANCE MONITORING AND
AGGREGATION

The monitoring and aggregation framework is integrated within
the distributed NaradaBrokering framework. This integration
will allow brokers, individually or collectively, to make
decisions on the best possible approach to route packets based
on the state of the network fabric and the type of interactions
being routed. The performance monitoring scheme within the
distributed broker network needs to have two important
characteristics. First, it should be able to work with different
transport protocols with no straitjacketing of the performance
factors being measured. The Link and LinkPerformanceData
primitives that abstract transport details and performance data
respectively, as outlined in the preceding section, ensure the
ability to work with unlimited performance factors over
different transport protocols. Different nodes, with different
types of links originating from them, can end up measuring a
different set of performance factors. Second, the scheme should
be to federate with other network measurement services such as
NWS.

5.1 Gathering performance metrics over a Link
Metrics computed and reported over individual links,
originating from a given broker node, include bandwidth, jitter,
transit delays, loss rates and system throughputs. To measure
performance metrics over a link, cooperation is needed at both

ends of the link. A lot of metrics rely on measurements that
require echo behavior from the sink end of the link. For
example, the easiest way to measure transit delay over a link is
to send a message with a timestamp, and have this message
echoed back from the sink end of the link. This obviates the
need for clock synchronizations and also the need to account for
clock drifts. Each node between which a link is established has
the option to reset the intervals at which performance
measurements are made. Furthermore, each node also has the
option to turn off measurement of metrics over the links.

Factors are measured in a non-intrusive way in order to ensure
that the measurements do not further degrade the metrics being
measured in the first place. Factors such as bandwidth
measurements, which can pollute other metrics being measured,
are measured at lesser frequencies. Furthermore, once a link is
deemed to be at the extreme ends of the performance spectrum
(either very good or very bad), the measurement of certain
factors are turned off while other metrics are measured at a far
lower frequency. Each link can measure and report a different
set of performance metrics. For e.g. loss rates are an important
metric for UDP communications but an insignificant one for
TCP. Similarly, depending on the type of application data being
routed over a link, the link may be called upon to enable or
disable the measurement of certain metrics. The jitter metric, for
example, is an important metric for audio/video conferencing
applications but is not very relevant in the context of text
messaging.

5.2 Accumulating performance metrics for a Node
Every broker in NaradaBrokering incorporates a monitoring
service (as shown in Figure 2) that monitors the state of the
links originating from the broker node. The TransportHandler
within the NaradaBrokering transport framework maintains a
list of all links originating from a node. The Monitoring Service
cycles through this list of links at regular intervals to retrieve
performance information from each link. Since each link is
assigned an ID, the performance data can be associated with
specific links. Monitoring service has an interface as shown in
figure 3. It can also show the chart of the performance values of
a link as shown in figure 4.

Broker
Node

Link
Data

Broker
NodeLink

Data

Performance Aggregation
Service

Aggregates info
from nodes in a
certain domain

Monitoring
Service

Control Exchange
Message

Figure 2: Aggregation Service Overview

Every NaradaBrokering node has a tiny web server associated
with it; the performance information for the node can be viewed
in an HTML file served by this web server. Since this
information is constantly changing, refreshing the page inside a
web server provides the network state of the node being
monitored. The monitoring service running at a node can

control the frequency at which individual links measure and
report performance data. Since the monitoring service deals
with Link instances which abstract transport details, the
monitoring service is not constrained by the transports that it
measures. The monitoring service at individual broker nodes is
akin to sensors in NWS.

Figure 3: Monitoring Service Interface

Figure 4: Chart of Link Performance Values

Each monitoring service instance is configured to report
performance data, measured over links originating from a node,
to a performance aggregator. The performance aggregator node
aggregates information from monitoring services running at
multiple nodes. The performance aggregators exchange
information with the monitoring services pertaining to the
measurement and reporting of performance factors. For
example, the aggregator can instruct the monitoring service
running at a broker node to stop (or modify the intervals
between) the measurement of certain metrics. Similarly, an
aggregator may instruct the monitoring service to report only
certain performance metrics and that too, only if the factors
have varied by the amount (absolute value or a percentage)
specified in its request. The monitoring service at a node can in
turn direct links to disable (or vary the intervals for)
measurements of certain metrics. Performance aggregators
monitor the state of the network fabric at certain realms.

5.3 Aggregating performance metrics from multiple nodes
To gather state of the network fabric that spans multiple realms,
the aggregators themselves may exchange information with
each other. Figure 5 depicts the scenarios where multiple
aggregators monitor different realms and also exchange
performance information with each other. Since link
implementers in NaradaBrokering can measure any metric over
their implementations, performance aggregation is not
constrained to a specific subset of transport protocols.

Furthermore, individual monitoring services can themselves use
a variety of transport protocols, to report data to the aggregator.
An added feature would be to allow administrators to monitor
specific realms or domains.

5.3.1 Encapsulating performance data
The monitoring service that runs at every node encapsulates
performance data gathered from each link in an XML structure.
XML is a structured document format, in that it represents not
only the information to be exchanged, but the metadata
encapsulating its meaning, and the structure of the information
to be exchanged. XML’s data encapsulation properties allow us
to access relevant fields in the performance data easily. Tags,
attributes and element structures provide context information,
which can then be used to interpret the meaning of the content
which provides intelligent data mining. Also, considering the
volume of data that would be aggregated, XML’s data
description capabilities allow us to mine the data efficiently and
effectively.

This encapsulation also enables to deploy sophisticated XPath
queries to diagnose network conditions and also to specify
thresholds on metrics for administrator notifications. We are
also investigating issues pertaining to storing the aggregated
performance metrics in a light weight XML database.
Knowledge discovery can be achieved by issuing queries to
these distributed XML databases.

PAS

Control Message
Exchange

Aggregates info
from nodes in a
certain domain

Monitoring
Service

PAS

PAS

PAS

Broker
Node

PAS info interchange

Figure 5: Multiple Performance Aggregators monitoring
 different domains/realms

5.4 Accumulation of data in a portal
Once data is accumulated at an aggregated node, this data needs
to be available to interested entities. There are two important
issues pertaining to the access to this data. First, there is the
issue of easy access to this data. Users should be able to access
this aggregated information from disparate locations. Enabling
access to this information through browsers (which are now
available even for hand-held devices) would be an excellent
choice while also obviating the need to develop proprietary
solutions to view the data.

Second, a need arises to present only the relevant parts of the
aggregated information to interested/authorized users. For
various reasons some of the aggregated information needs to be
viewed only by a user with administrative privileges. Also,

some users may need information pertaining to the broker nodes
that they manage. This calls for presenting different views of
the aggregated data to different users.

Portals fill this need of easy accessibility and restricted views to
the same data sets. Information accumulated within the
aggregators will be made accessible to users via a portlet
residing in a portal. A portal is a system that gathers a variety of
information sources and services into a single Web page, while
portlets are specialized modules that plug into and run inside a
portal. A portlet and a servlet are the same thing, where servlet
is an application within a Web server and a portlet is an
application within a portal. Portlets can contain variety of
information such as sports scores, world news and stock quotes.
Portlets interact with web clients indirectly through portals
using a request/response paradigm implemented by the portlet
container (HTTP). Multiple portlets can be assigned to one or
more portals. Portlets are stored in portlet catalog where users
can browse and add them into a desired location in their own
portal pages and configure them to display personalized content.
Portlets are developed, managed and displayed independent of
other portlets. Portals provide API’s for portlet creation.

There are many commercial portal environments available from
companies such as IBM, Sun, Microsoft and BEA Systems Inc.
Beside those there are also free and open source portal
implementations available. We are currently using Apache
Jetspeed Enterprise Information Portal[46] as our portal
environment. We chose Jetspeed because it is free and open
source, which makes custom modifications possible.

5.4.1 Advantages of using portals to display information
Portals can display multiple HTML code generated by entities.
Portals can also collect content from disparate remote sources
such as HTML, XML and images into one page. Besides
sophisticated session management, portals also facilitate
customized user and group views. The latter feature allows us
to restrict access to network performance data by ensuring that
different users/groups have access to different features of the
aggregated performance metrics. Some entity, either user or
group, may thus have access to the entire performance set, while
others may have access only to usage patterns or specific
metrics or a subset of the aggregated performance data.

5.4.2 Viewing the aggregated performance data
There are two different approaches that can be deployed to view
aggregated performance data in the portal environment. The
first approach would be to use the XSLT portlet, which comes
with the Apache Jetspeed Enterprise Information Portal, to
access the XML data created by the performance aggregator,
convert it into an HTML file using the given XSL style sheet
and display them inside the portal. Jetspeed provides for
grouping of portlets under a given name. This is useful for
providing customized views of the performance metrics.
Details pertaining to the viewing of aggregated network
performance data inside portals while providing customized
user views can be found in Ref [47]. Another approach is to
write a customized portlet, which accesses an XML database to
retrieve the performance metrics, process the XML data
and then display it in a portal. The feature would be useful
while dealing with light weight distributed XML databases,
outlined in an earlier section.

5.5 Federating with other network performance monitoring
services
Since the information returned to the aggregators encapsulated
in an XML structure, it is very easy to incorporate results
gathered from another network monitoring service such as
NWS. All that needs to be done is to have a proxy, residing at a
NWS node that encapsulates the monitored data into an XML
structure. This proxy can then report this data measured by
NWS to the aggregator node, which would use this data for
knowledge discovery. Administrators can also specify
thresholds on metrics measured by other network monitoring
services such as NWS.

5.6 Determining the best available broker
Based on the aggregated information it should be possible to
determine the best broker that a client can connect to within a
certain realm. Scaling algorithms, which add new brokers to
deal with increased load, would benefit greatly from this
strategy by incorporating newly added broker nodes (which
would be among the best available brokers to connect to) into
the routing solution. A similar scheme was employed in our
broker locator strategy outlined in [24].

5.7 Monitoring and Portal Overheads
In this section we report on our experiments. The experiments
were performed on a Windows 2000 machine (Pentium-4, 1.5
GHz, 512 MB) and all the processes involved ran using the Java
1.4 JRE VM. In our experiments we simulate the presence of
multiple links (sometimes reaching several thousands) since it
would be infeasible to actually set up the large number of links
that we deal with in our experiments. Also, in our experiments
the portal is running on the same machine where the database
file is on. There is thus no network delay to load the database
file.

For our experiments we did three different kinds of
measurements, First, we measured the time for constructing the
W3C Document Object Model from an XML file. The time
associated with this construction varies with the number of
XML elements in the file, which corresponds to the number of
links whose information has been aggregated. Figure 6 depicts
the W3C Document creation time as a function of the number of
elements in the XML file. The cost varies from 691
milliseconds for an XML file with 100 elements (representing
100 links) to 2.824 seconds for an XML file with 16000 entries.

Figure 6. Document construction time

500

1000

1500

2000

2500

3000

0 2000 4000 6000 8000 10000 12000 14000 16000

D
el

ay
 in

 M
illi

se
co

nd
s

Number of stored elements (1 per link)

Document Construction Time as a Function of
the Number of Link Entries

 Construction Time

Figure 7. Query evaluation time

Second, we measured the time to evaluate typical queries based
on different number of links in the aggregated data. The graph
in Figure 7 depicts this increase in evaluation time
corresponding to increases in the number of entries in the XML
flat-file. The evaluation operation can of course be optimized
considerably by evaluating queries only for those links (each
with a unique link ID) whose values have changed. In our
earlier work we had incorporated a scheme where monitoring
nodes would report data about links, only if there is a certain
percentage change from its last reported data. This optimization
would allow us to reduce query evaluation time very
significantly.

Figure 8. XSL transformation time

Finally, we include timing delays associated with time it takes
the XSLT portlet to transform an XML file into the
corresponding HTML file using a given XSL style sheet. Figure
8 depicts the time needed for this transformation.

6. FUTURE WORK

The aggregated XML performance data (from the monitoring
service at each node and other third-party services) would be
mined to generate information, which would then be used to
achieve certain objectives.

a) The ability to identify, circumvent, project and prevent
system bottlenecks: Different transports would reveal this
in different ways. As system performance degrades UDP
loss rates may increase, TCP latencies increase. Similarly
as available bandwidths decrease the overheads associated
with TCP error correction and in order delivery may
become unacceptable for certain applications.

b) To aid routing algorithms: Costs associated with link
traversals in broker network maps (BNMs) would be
updated to reflect the state of the fabric and the traversal
times associated with links in certain realms. Routes
computed based on this information would then reveal
"true" faster routes.

c) To be used for Dynamic topologies to address both (a) and
(b): The aggregated performance information would be
used to identify locations to upgrade the network fabric of
the messaging infrastructure. This upgrade would involve
brokers/connections be instantiated/purged dynamically to
assuage system bottlenecks and to facilitate better routing
characteristics. Dynamic topologies coupled with efficient
routing protocols can help in the efficient utilization of
network resources.

7. CONCLUSIONS

In this paper we discussed the need for network performance
monitoring and aggregation. We described the performance
aggregation framework within NaradaBrokering. The scheme
can also incorporate results from other performance monitoring
services. Metrics measured are not constrained in any way, and
the scheme works with different protocols in a heterogeneous
network environment. Since the aggregated data is encapsulated
in XML, mining the data to reveal network diagnostics is easy
to achieve.

8. REFERENCES

[1] Zhang, L. et al. “ReSource ReserVation Protocol (RSVP) –

Functional Specification”, Internet Draft, March 1994.
[2] Topolcic, C., “Experimental Internet Stream Protocol:

Version 2 (ST-II)”, Internet RFC 1190, October 1990.
[3] Oram, A. (eds) 2001. Peer-To-Peer: Harnessing the Power

of Disruptive Technologies. O’Reilly, Sebastapol, CA
95472.

[4] IETF Benchmark Working subgroup:
http://www.ietf.org/html.charters/ippm-charter.html

[5] CAIDA http://www.caida.org/tools/
[6] R. Wolski, N. Spring, and C. Peterson. Implementing a

performance forecasting system for metacomputing: The
Network Weather Service. Tech. Rep. TR-cs97-540,
University of California, San Diego, May 1997.

[7] R. Wolski. Forecasting network performance to support
dynamic scheduling using the network weather service.
Proceedings of the 6th IEEE Symp. On High Performance
Distributed Computing, August 1997.

[8] R. Carter and M. Crovella. Dynamic server selection using
bandwidth probing in wide-area networks. Technical
Report TR-96-007, Boston University 1996.

[9] R. Carter and M. Crovella. Measuring bottleneck link
speed in packet-switched networks. Technical Report TR-
96-006, Boston University 1996.

[10] B. Lowecamp, N. Miller, D. Sutherland, T. Gross, P.
Steenkiste and J. Subhlok. A resource query interface for

0

500

1000

1500

2000

2500

3000

3500

4000

0 2000 4000 6000 8000 10000 12000 14000 16000

D
el

ay
 in

 M
illi

se
co

nd
s

Number of stored elements (1 per link)

XSL Transformation Time as a Function of
the Number of Link Entries

 Transformation Time

0

1000

2000

3000

4000

5000

6000

0 2000 4000 6000 8000 10000 12000 14000 16000

D
el

ay
 in

 M
illi

se
co

nd
s

Number of stored elements (1 per link)

Constraint Evaluation Time as a Function of
the Number of Link Entries

 Evaluation Time

network-aware applications. In Proc. 7th IEEE Symp. On
High Performance Distributed Computing, August 1998.

[11] S. Fritzgerald. I. Foster, C. Kesselman, G. von Laszewski,
W. Smith and S. Tuecke. A directory service for
configuring high performance distributed computations. In
Proc. 6th IEEE Symp. On High Performance Distributed
Computing, August 1997.

[12] S. J. Chapin, J. Karpovich and A. Grimshaw. Resource
management in legion. Technical report cs-98-09,
University of Virginia, Department of Computer Science,
May 1998.

[13] K. Obraczka and G.Gheorghiu. The performance of a
service for network-aware applications. In proceedings of
2nd SIGMETRICS Conference on Parallel and Distributed
Tools, August 1998, to appear.

[14] F.Berman, R. Wolski, S. Figueira, J.Scopf and G. Shao.
Application level scheduling on distributed heterogeneous
networks. In proceedings of Supercomputing 1996, 1996.

[15] C. Yoshikawa, B. Chun, P. Eastham, A.Vahdat,
T.Anderson and D. Culler. Using Smart Clients to build
scalable services. In Proceedings of the USENIX 1997
Technical Conference, 1997.

[16] J. Gehrinf and A.Reinfeld. Mars – A framework for
minimizing the job execution time in a metacomputing
environment. Proceedings of Future General Computer
Systems, 1996

[17] R. Jones. Netperf. Available from
http://www.cup.hp.com/netperf/NetperfPage.html

[18] M.Mathis and J.Madhavi. Diagnosing internet congestion
with a transport layer performance tool. Proceedings of the
INET 1996, 1996

[19] V. Jacobson. A tool to infer characteristics of internet
paths. Available from ftp://ftp.ee.lbl.gov/pathchar.

[20] The NaradaBrokering System
http://www.naradabrokering.org

[21] Geoffrey Fox and Shrideep Pallickara, An Event Service to
Support Grid Computational Environments, (To appear)
Concurrency and Computation: Practice and Experience,
Special Issue on Grid Computing Environments.

[22] Shrideep Pallickara and Geoffrey Fox. A Middleware
Framework and Architecture for Peer-to-Peer Grids. (To
appear) Proceedings of ACM/IFIP/USENIX International
Middleware Conference Middleware-2003.

[23] Geoffrey Fox, Shrideep Pallickara and Xi Rao, “A
Scaleable Event Infrastructure for Peer to Peer Grids”.
Proceedings of ACM Java Grande ISCOPE Conference
2002. Seattle, Washington. November 2002.

[24] Geoffrey Fox and Shrideep Pallickara, “JMS Compliance
in the Narada Event Brokering System”. Proceedings of
the International Conference on Internet Computing (IC-
02). June 2002. pp 391-402.

[25] Geoffrey Fox et al, “Grid Services For Earthquake
Science” Concurrency & Computation: Practice and
Experience. 14(6-7): 371-393 (2002).

[26] Hasan Bulut, Geoffrey Fox, Shrideep Pallickara, Ahmet
Uyar and Wenjun Wu, “Integration of NaradaBrokering
and Audio/Video Conferencing as a Web Service”.
Proceedings of the IASTED International Conference on
Communications, Internet, and Information Technology,
November, 2002, in St.Thomas, US Virgin Islands.

[27] Geoffrey Fox and Shrideep Pallickara, “An Approach to
High Performance Distributed Web Brokering”. ACM
Ubiquity Volume2 Issue 38. November 2001.

[28] Geoffrey Fox, Ozgur Balsoy, Shrideep Pallickara, Ahmet
Uyar, Dennis Gannon, and Aleksander Slominski,
"Community Grids" invited talk at The 2002 International

Conference on Computational Science, April 21 -- 24,
2002 Amsterdam, The Netherlands.

[29] D.J. Watts and S.H. Strogatz. “Collective Dynamics of
Small-World Networks”. Nature. 393:440. 1998.

[30] R. Albert, H. Jeong and A. Barabasi. “Diameter of the
World Wide Web”. Nature 401:130. 1999.

[31] Mark Happner, Rich Burridge and Rahul Sharma. Java
Message Service Specification”. Sun Microsystems. 2000.
http://java.sun.com/products/jms.

[32] Sun Microsystems. The JXTA Project and Peer-to-Peer
Technology http://www.jxta.org

[33] The JXTA Protocol Specifications.
http://spec.jxta.org/v1.0/docbook/JXTAProtocols.html

[34] Gurudutt Banavar, Tushar Chandra, Bodhi Mukherjee, Jay
Nagarajarao, Rob Strom, and Daniel Sturman. An Efficient
Multicast Protocol for Content-Based Publish-Subscribe
Systems.In Proceedings of the IEEE International
Conference on Distributed Computing Systems, Austin,
Texas, May 1999.

[35] Bill Segall and David Arnold. Elvin has left the building:
A publish/subscribe noti.cation service with quenching. In
Proceedings AUUG97, pages 243–255, Canberra,
Australia, September1997.

[36] Fiorano Corporation. A Guide to Understanding the
Pluggable, Scalable Connection Management (SCM)
Architecture - White Paper. Technical report,
http://www.fiorano.com/ products/fmq5 scm wp.htm,
2000.

[37] Talarian Corporation. Smartsockets: Everything you need
to know about middleware: Mission critical interprocess
communication. Technical report, URL:
http://www.talarian.com/products/smartsockets, 2000.

[38] TIBCO Corporation. TIB/Rendezvous White Paper.
Technical report, URL:
http://www.rv.tibco.com/whitepaper.html, 1999.

[39] The Object Management Group (OMG). OMG’s CORBA
Event Service. URL:
http://www.omg.org/technology/documents/formal/eventse
rvice.htm, June 2000. Version 1.0.

[40] RTP: A Transport Protocol for Real-Time Applications
(IETF RFC 1889) http://www.ietf.org/rfc/rfc1889.txt.

[41] XML based messaging and protocol specifications SOAP.
http://www.w3.org/2000/xp/.

[42] Microsoft Internet Security and Acceleration (ISA) Server.
http://www.microsoft.com/isaserver/

[43] Checkpoint Technologies. http://www.checkpoint.com/
[44] iPlanet. http://www.iplanet.com/
[45] Shrideep Pallickara, Geoffrey Fox, John Yin, Gurhan

Gunduz, Hongbin Liu, Ahmet Uyar, Mustafa Varank. A
Transport Framework for Distributed Brokering Systems.
(To appear) Proceedings of the International Conference
on Parallel and Distributed Processing Techniques and
Applications. (PDPTA'03).

[46] Apache Jetspeed.
http://jakarta.apache.org/jetspeed/site/index.html

[47] Gurhan Gunduz, Shrideep Pallickara, Geoffrey Fox. A
Portal Based Approach to Viewing Aggregated Network
Performance Data in Distributed Brokering Systems.
http://www.naradabrokering.org

