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Abstract—We introduce Cloud DIKW as an analysis 

environment supporting scientific discovery through integrated 
parallel batch and streaming processing, and apply it to one 
representative domain application: social media data stream 
clustering. In this context, recent work demonstrated that high-
quality clusters can be generated by representing the data points 
using high-dimensional vectors that reflect textual content and 
social network information. However, due to the high cost of 
similarity computation, sequential implementations of even 
single-pass algorithms cannot keep up with the speed of real-
world streams. This paper presents our efforts in meeting the 
constraints of real-time social media stream clustering through 
parallelization in Cloud DIKW. Specifically, we focus on two 
system-level issues. Firstly, most stream processing engines such 
as Apache Storm organize distributed workers in the form of a 
directed acyclic graph (DAG), which makes it difficult to 
dynamically synchronize the state of parallel clustering workers. 
We tackle this challenge by creating a separate synchronization 
channel using a pub-sub messaging system (ActiveMQ in our 
case). Secondly, due to the sparsity of the high-dimensional 
vectors, the size of centroids grows quickly as new data points are 
assigned to the clusters. As a result, traditional synchronization 
that directly broadcasts cluster centroids becomes too expensive 
and limits the scalability of the parallel algorithm. We address 
this problem by communicating only dynamic changes of the 
clusters rather than the whole centroid vectors. Our algorithm 
under Cloud DIKW can process the Twitter 10% data stream 
(“gardenhose”) in real-time with 96-way parallelism. By natural 
improvements to Cloud DIKW, including advanced collective 
communication techniques developed in our Harp project, we 
will be able to process the full Twitter data stream in real-time 
with 1000-way parallelism. Our use of powerful general software 
subsystems will enable many other applications that need 
integration of streaming and batch data analytics. 

Keywords—social media data stream clustering; parallel 
algorithms; stream processing engines; high-dimensional data; 
synchronization strategies 

I. INTRODUCTION 
As data intensive computing problems evolve, many 

applications require integrated batch analysis and streaming 
analysis in the cloud. A good demonstration of the system-
level innovation for supporting such use cases is Google’s 
Cloud DataFlow [19]. Moving forward with this trend, we 
propose the Cloud DIKW (Data, Information, Knowledge, 

Wisdom) environment as shown in Fig. 1. It is designed to 
support analytic pipelines that require the integration of both 
sophisticated batch data processing algorithms and non-trivial 
streaming algorithms. By “non-trivial” algorithms, we refer to 
the cases where parallel workers not only process stream 
partitions independently, but also dynamically synchronize 
with the global state from time to time. The synchronization 
strategy could either leverage a pub-sub messaging system, or 
reuse the communication mechanisms in batch algorithms, or 
use a combination of both. 

 
Fig. 1. Architecture of Cloud DIKW 

This paper presents our work in applying this environment 
to support one representative application: clustering of social 
media data streams. As an important data mining technique, 
clustering is used in many applications involving social media 
stream analysis, such as meme [14][29], event [10], and social 
bots detection [14]. As an example, Fig. 2 illustrates the 
analysis pipeline of the DESPIC (Detecting Early Signatures of 
Persuasion in Information Cascades) platform [14] that is being 
developed by the Center for Complex Networks and Systems 
Research at Indiana University. This platform first clusters 
posts collected from social streams (e.g., tweets from Twitter) 
into groups of homogenous memes, according to various 
measures of similarity, and then uses classification methods to 
detect memes generated by real users and separate them from 
those produced by social bots [15]. 

 
Fig. 2. DESPIC analysis pipeline for meme clustering and classification [14] 

 Social media data streams come in the form of continuous 
sequences of atomic posts, e.g. Twitter’s tweets or Facebook’s 



status updates. The target of the clustering process is to group 
messages that carry similar meaning together, while capturing 
the dynamic evolution of the streams that is closely related to 
social activities in the real world. For example, two tweets, 
“Step up time Ram Nation. #rowdyrams” and “Lovin 
@SpikeLee supporting the VCU Rams!! #havoc”, should be 
grouped into the same cluster because they both talk about the 
VCU (Virginia Commonwealth University) basketball team. 
Furthermore, the appearance of “@SpikeLee” in the cluster is 
an indicator of the event that the famous director Spike Lee 
was wearing a VCU T-shirt while watching the VCU and 
UMass game courtside on Mar 16th, 2013. 

 In order to design a high-quality clustering algorithm, some 
unique characteristics of social posts must be considered. For 
instance, the length of the textual content of a social message is 
normally short, which makes clustering methods solely based 
on lexical analysis ineffective [10][20][29]. Social messages 
also carry rich information about the underlying social network 
(e.g. through the functionality of ‘retweet’ and ‘mention’ on 
Twitter), which can be valuable for measuring the similarity 
among data points and clusters. In addition they may contain 
other metadata such as temporal and geographical information, 
hashtags, URLs, etc., which can also be leveraged to 
effectively guide the clustering process. Fig. 3 illustrates an 
example tweet received from the Twitter Streaming API [35]. 
Besides textual content, hashtags, and URLs, each tweet also 
contains information about the creation time and geolocation of 
the source  (i.e., the author of the tweet), the user(s) mentioned 
in the tweet, and possible retweet relationship between tweets. 

 
Fig. 3. An example social message from Twitter Streaming API 

Domain researchers in the area of social media data 
analysis have recently invested a great deal of efforts toward 
developing proper data representations and similarity metrics 
to generate high-quality clusters [10][14][20][29]. An 
important conclusion is that the data representation should not 
only describe the textual features of the social messages, but 
also capture the temporal, geographical, and social network 
information therein attached. For example, Aggarwal and 
Subbian [10] proposed an event-detection system that uses two 
high-dimensional vectors to describe each social post: one 
content vector that represents the textual word frequencies, and 

another binary vector housing the IDs of the social message’s 
recipients (e.g., the followers of a tweet’s author on Twitter). 
To compute the similarity between two social messages, an 
independent score is first computed using each vector, and then 
a linear combination of the two scores is taken as the overall 
similarity between the two messages. It has been demonstrated 
that the quality of the resulting clusters can be significantly 
improved by using the combined similarity rather than just the 
textual content similarity. JafariAsbagh et al. [29] proposed to 
first group the social messages into ‘protomemes’ according to 
shared metadata such as hashtags and URLs, and then use the 
protomemes as input data points to the clustering algorithm. 
They use four high-dimensional vectors to describe each 
protomeme, and define a new ‘diffusion network’ vector to 
replace the full followers vector used in [10], which is not 
easily available in a practical streaming scenario. The authors 
show that a combination of these new techniques can help 
generate better clustering results than previous methods when 
measured against a common ground truth data set. 

To achieve efficient processing of social media data 
streams, these special data representations and similarity 
metrics are normally applied in a single-pass clustering 
algorithm such as online K-Means and its variants [2][10][29]. 
The algorithm can be further equipped with mechanisms like 
sliding time windows [1][29], weighted data points 
[2][8][9][11], and outlier detection [8][10][17][29] to deal with 
the dynamic evolution of the streams. However, due to the high 
cost of similarity computation coming from the high-
dimensional vectors, sequential implementations of such 
single-pass streaming algorithms are not fast enough to match 
the speed of real-world streams. For example, the fastest 
implementation presented in [10] can only process less than 
20,000 tweets per hour, while the Twitter gardenhose stream 
[25] generates over 1,000,000 tweets in one hour. According to 
a test we carried out, it takes 43.4 hours for a sequential 
implementation of the algorithm in [29] to process one hour’s 
worth of data collected through the gardenhose Twitter 
streaming API. It becomes clear that parallelization is a 
necessity in order to handle real-time data streams. 

In this paper we describe our work in parallelizing a state-
of-the-art social media data stream clustering algorithm 
presented in [29], which is a variant of online K-Means 
incorporating a sliding time window and outlier detection 
mechanisms. We use Apache Storm [6] stream processing 
engine in Cloud DIKW for data transmission and work load 
distribution, and identify and tackle two system-level 
challenges emerging from parallelization of such algorithms. 

The first challenge concerns the fact that most stream 
processing engines organize the distributed processing workers 
in the form of a directed acyclic graph (DAG); this makes it 
difficult to dynamically synchronize the state of the parallel 
clustering workers without breaking the “live” processing of 
the stream. The reason is that the synchronization step requires 
parallel workers to send their local updates either to each other 
or to a global updates collector which will then broadcast the 
updated global state back to the parallel workers. Both methods 
inevitably create cycles in the communication channel, which 
is not supported in the DAG-oriented stream processing 
frameworks. To address this challenge, we create a separate 



synchronization channel by incorporating the pub-sub 
messaging system ActiveMQ [5] into Cloud DIKW, and 
combine its functionality with Storm to coordinate the 
synchronization process. 

The second issue is that the sparsity of high-dimensional 
vectors may cause the cluster centroids to greatly increase in 
size with the addition of new data points to the clusters. Fig. 4 
illustrates a cluster containing two tweets about VCU 
basketball as mentioned earlier. Due to the sparsity of the 
content vector (assuming the hashtags and user mentions are 
extracted as another separate vector) of each data point, they 
only overlap along one dimension “ram”. As a result, the 
length of the content vector of the centroid, which is computed 
as an average of the two data points, is close to the sum total 
length for two separate vectors. Due to the high dimensionality 
of these vectors, this trend can continue as more data points are 
added, and the length of the centroid vectors increases 
dramatically. A sliding time window mechanism may help to 
limit the total size by removing old data points, but the full 
centroids data remains large and difficult to transfer over the 
network. Consequently, the classic K-Means synchronization 
strategy of directly broadcasting the cluster centroids becomes 
infeasible and hampers scalability of the parallel algorithm. To 
solve this problem, we propose a new strategy that broadcasts 
the dynamic changes (i.e. the “deltas”) of the clusters rather 
than the complete centroids data. Since the size of the deltas 
are small, we are able to keep the synchronization cost at a low 
level and achieve good scalability. For sake of simplicity, we 
name the traditional synchronization strategy the full-centroids 
strategy, and our new synchronization strategy the cluster-
delta strategy. 

 
Fig. 4. An example of growing vector size of centroids 

We use a real dataset collected through the Twitter 
streaming API 10% sample (“gardenhose”) [25] to verify the 
effectiveness of our solutions and evaluate the scalability of 
our parallel algorithm. The results demonstrate that we can 
keep up with the speed of the Twitter gardenhose stream using 
less than 100 parallel clustering workers.  

The rest of this paper is organized as follows. Section II 
discusses related work and their connections to our research. 
Section III gives a brief description of the sequential algorithm 
that we parallelize. Section IV explains the implementation of 
our parallel algorithm. Section V evaluates the effectiveness of 
our synchronization strategy and the scalability of our parallel 
algorithm. Section VI concludes with future work. 

II. RELATED WORK 
Data stream clustering algorithms have been an active 

research area for many years as witnessed by Ding et al. review 
work [31]. For the problem of high-dimensional data stream 
clustering, techniques such as projected/subspace clustering 
[8][9][38] and density-based approaches [1][17][38] have been 
proposed and investigated. Due to the unique data 
representations (multiple high-dimensional vectors from totally 
independent spaces) and similarity metrics used for social 
media data streams, it seems hard to apply these existing 
techniques to the case of social media streams. We listed and 
discussed practical limitations in a previous work [14]. Here 
we inherit the high-dimensional data representation and 
similarity metrics that have been proven effective, and focus on 
improving the efficiency of the clustering algorithm through 
parallelization. 

The algorithm presented in [10] uses sketch tables [12] to 
deal with the growing size of tweet followers network 
information maintained for the clusters. However, sketch tables 
only approximate vector values and thus may impact the 
accuracy of the clustering results. In the case of our algorithm, 
since the size of the centroid vectors is constrained by the size 
of the sliding time window, we are not forced to use sketch 
tables with their loss of accuracy. For faster data streams or 
longer time windows, a sketch table-based implementation 
could eventually become more efficient in terms of both space 
and time for computing the similarities between data points and 
cluster centroids. Nonetheless, our cluster-delta 
synchronization strategy may still achieve better efficiency 
than broadcasting the whole sketch tables in such cases since 
the sketch tables have to be large enough to ensure accuracy. 

A similar work to ours is the parallel implementation of the 
Sequential Leader Clustering [22] algorithm presented in [18], 
which also leverages Storm [6] for parallel processing and data 
stream distribution. The parallel clustering algorithm by Wu et 
al. is simplified, because it only considers the textual content of 
social messages and uses Locality-Sensitive Hashing [4] to 
guide the stream distribution, which avoids synchronization 
among the parallel clustering workers. However, this type of 
algorithms is unable to make use of the valuable social network 
information contained in the data streams. Callau-Zori 
proposed a distributed data stream clustering protocol based on 
sequential (a, b)-approximation algorithms for the K-Means 
problem [27]. Although the author provides a theoretical 
analysis of its accuracy and efficiency, it does not address the 
special case of high-dimensional data, and only considers the 
situation within a single time window. 

Compared with streaming databases such as Aurora [28] 
and Borealis [13], the functionality of our clustering workers in 
Storm is more complicated than their streaming operators for 
evaluating SQL queries. Cloud DIKW can utilize other stream 
processing engines such as Apache S4 [26] and Spark 
Streaming [30]. We choose Storm because its pull-based data 
transmission mode makes it easy to carry out controlled 
experiments at different levels of parallelism.  Storm gives us 
more flexibility to implement and test different synchronization 
strategies. Interested readers may refer to [32] for a survey of 
major distributed stream processing frameworks. 



III. SEQUENTIAL CLUSTERING ALGORITHM 
The sequential algorithm we parallelize was originally 

proposed in [29] for clustering memes in the Twitter streams of 
tweets. In order to generate high-quality clusters, the algorithm 
first groups tweets into ‘protomemes’, and then uses these 
protomemes as input data points for the clustering process. We 
start by introducing the definition of a protomeme and its data 
representation. 

A. Protomemes and Clusters 
A protomeme is defined as a set of tweets grouped together 

according to a shared entity of one of the following types: 

• Hashtags. Tweets containing the same hashtag. 

• Mentions. Tweets mentioning the same user. A 
mention is identified by a user’s screen name preceded 
by the ‘@’ symbol in the text body of a tweet. 

• URLs. Tweets containing the same URL. 

• Phrases. Tweets sharing the same phrase. A phrase is 
defined as the textual content of a tweet that remains 
after removing the hashtags, mentions, URLs, and after 
stopping and stemming [23]. 

We call these four types of entities markers of protomemes. 
Note that according to this definition, a tweet may belong to 
multiple protomemes. Each protomeme is represented by its 
marker and four high-dimensional vectors: 

(1) A binary tid vector containing the IDs of all the tweets 
in this protomeme: VT = [tid1 : 1, tid2 : 1, …, tidT : 1]; 

(2) A binary uid vector containing the IDs of all the users 
who authored the tweets in this protomeme: VU = [uid1 : 1, uid2 
: 1, …, uidU : 1]; 

(3) A content vector containing the combined textual 
word frequencies for all the tweets in this protomeme: VC = 
[w1 : f1, w2 : f2, …, wC : fC]; 

(4) A binary vector containing the IDs of all the users in 
the diffusion network of this protomeme. The diffusion network 
of a protomeme is defined as the union of the set of tweet 
authors, the set of users mentioned by the tweets, and the set of 
users who have retweeted the tweets. We denote this diffusion 
vector as VD = [uid1 : 1, uid2 : 1, …, uidD : 1]. 

A cluster is defined as a set of protomemes grouped 
together according to a certain similarity metric. Since a tweet 
may belong to multiple protomemes, clusters may overlap in 
terms of tweets. The centroid of each cluster is represented 
with four high-dimensional vectors, which are the averages of 
corresponding vectors of all protomemes in the cluster. We 
denote the vectors of the cluster centroid as VT, VU, VC, and VD.  

To compute the similarity between a protomeme and a 
cluster, the cosine similarity between each vector of the 
protomeme and the corresponding vector of the cluster centroid 
is first computed. Then the maximum value of all these cosine 
similarities is chosen as the overall similarity between the two. 
We demonstrated in [14] that, for the purpose of generating 
high-quality clusters, taking the maximum similarity score is as 
effective as using an optimal linear combination of all the 

similarity scores. There are multiple ways to define distance 
based on the similarity; we use the simplest form 1 – similarity. 

B. Sequential Clustering Algorithm 
 
Algorithm TweetStreamClustering 
Input parameters: 
  K: number of clusters; 
  t: length of time step by which the time window advances; 
  l: length of the time window in steps; 
  n: number of standard deviations from the mean to identify 
      outliers; 
begin 
  Initialize global list of clusters cl as empty; 
  Initialize global list of protomemes gpl as empty; 
  Initialize the time window tw as empty; 
  Initialize μ, σ to 0; 
  while not end of stream do 

advance the time window tw by t; 
let npl = list of protomemes generated from the tweets in t; 
if cl is empty then 
  initialize cl using K random protomemes in npl; 
  remove these K protomemes from npl; 
endif 
for each protomeme p in gpl that is older than the current tw 
  delete p from gpl and the cluster it belongs to; 
endfor 
for each new protomeme p in npl 
  if p.marker has been previously assigned to a cluster c then 
    add p to c and update the centroid of c; 
  else 
    let c = the cluster in cl whose centroid is most similar to p; 
    if sim(p, c) > μ – n * σ then 
      add p to c and update the centroid of c; 

        else 
          create a new cluster c’ containing only one protomeme p; 
          if there is an empty cluster in cl then 
            replace the empty cluster with c’; 
          else 
            replace the least recently updated cluster in cl with c’; 
          endif 
        endif 
      endif 
      add p to gpl; 
      dynamically maintain μ and σ; 

endfor 
  endwhile 
end 

Fig. 5. The social media stream clustering algorithm from [29] 

Fig. 5 illustrates the sketch of the sequential clustering 
algorithm from [29]. The algorithm controls its progress 
through a sliding time window that moves step by step. The 
length of a time step in seconds and the length of the time 
window in steps are given as input parameters. These are 
defined with respect to the timestamps of the social posts (i.e., 
the tweets), not the wall-clock time for running the algorithm. 
Every time the sliding window advances, old protomemes 
falling out of the current window are deleted from the clusters 
and new ones are generated using the tweets from the latest 



time step. For every new protomeme, the algorithm first checks 
whether others with the same marker have been previously 
assigned to a cluster. If so, the new protomeme will be added 
to the same cluster. Otherwise, the algorithm will compute the 
new protomeme’s similarity with all the existing clusters, and 
decide whether or not this is an outlier. If not, the protomeme is 
assigned to the most similar cluster. Otherwise, a new cluster is 
created and initialized with this new protomeme, then inserted 
into the list of all clusters by replacing either an empty cluster 
or the least recently updated one. In order to determine whether 
the protomeme is an outlier, the algorithm maintains the mean 
μ and standard deviation σ of the similarities between all 
processed protomemes and the centroid of the clusters they 
belong to. If the similarity between a new protomeme and its 
closest cluster is smaller than the mean by more than n 
standard deviations, then the protomeme is identified as an 
outlier. μ and σ are maintained incrementally as in [10]. 

The quality of clusters generated by this algorithm was 
evaluated in [29] using a ground truth dataset collected from 
the Twitter gardenhose stream [25] during a week in 2013, 
which includes all the tweets containing the Twitter trending 
hashtags [36][16] identified during that time. A variant of the 
Normalized Mutual Information (NMI) [24] measurement, 
LFK-NMI [3], which is especially well suited for the case of 
overlapping clusters, was computed between the result clusters 
of the algorithm and the ground truth clusters. The results in 
[29] show that this algorithm can achieve better performance 
than previous state-of-the-art methods, including the one 
presented in [10]. We use the same ground truth dataset and 
LFK-NMI measurement to verify the effectiveness of our 
parallel implementation of the algorithm in Section V. 

C. Opportunities and Difficulties for Parallelization 
We run the sequential algorithm on a raw dataset (without 

any filtering) containing six minutes of tweets (2014-08-29 
05:00:00 to 05:05:59) collected from the Twitter gardenhose 
stream. By fixing the parameters K, l, and n to 120, 6, and 2, 
and varying the length of a time step, we collect some 
important runtime statistics that are informative to the 
development of the parallel version of the algorithm. 

Table I presents the results for the last time step of the 
whole clustering process when the time step length is increased 
from 10 to 30 seconds (which means the time window length is 
increased from 60 to 180 seconds). The numbers for the other 
time steps follow a similar pattern. The second column 
measures the total length of the content vectors of all the 
cluster centroids at the end of the last time step; the third 
column measures the time spent on computing the similarities 
between protomemes and cluster centroids in that time step; 
and the fourth column measures the time spent on updating the 
vectors of the cluster centroids. 

TABLE I.  RUNTIME STATISTICS FOR THE SEQUENTIAL ALGORITHM 

Time Step 
Length (s) 

Total Length of 
Content Vector 

Similarity 
Compute time (s) 

Centroids 
Update Time (s) 

10 47749 33.305 0.068 
20 76146 78.778 0.113 

30 128521 209.013 0.213 

Some interesting observations lead to our research of   
parallelizing the streaming algorithm: first, the whole 
clustering process is dominated by the computation of 
similarities. The ratio of similarity compute time / centroids 
update time in Table I increases from 490 to 981 as the length 
of the time window increases from 10 to 30 secs. This implies 
the feasibility of parallelizing the similarity computation, and 
processing the global updates of centroids with a central 
collector. Furthermore, the longer the time window, the more 
we can benefit from parallelization. 

We also observed that the content vector size of the 
centroids expands as the length of the time window increases. 
In fact, the other vectors (VT, VU, VD) demonstrate the same 
trend. This confirms our analysis in Section I about the 
infeasibility of traditional synchronization strategies. To 
address this issue, we design the new cluster-delta strategy, 
which will be presented in Section IV. 

IV. PARALLEL IMPLEMENTATION ON STORM 

A. Storm 
Apache Storm is a stream processing engine designed to 

support large-scale distributed processing of data streams. It 
defines a stream as an unbounded sequence of tuples, and 
provides an easy-to-use event-driven programming model to 
upper level applications. Stream processing applications are 
expressed as topologies in Storm. There are two types of 
processing elements in a topology, spouts and bolts, which are 
organized into a DAG through the streams connecting them. A 
spout is a source of streams that generates new tuples and 
injects them into the topology. A bolt can consume any number 
of input streams, do some processing to each tuple of the 
streams, and potentially generate and emit new tuples to the 
output streams. To define a topology, an application only needs 
to provide implementation logic for spouts and bolts, specify 
the runtime parallelism level of each type, and configure the 
data distribution patterns among them. The Storm framework 
will automatically take care of system management issues 
including data transmission, parallel spouts/bolts execution, 
work load distribution, and fault tolerance. 

 Fig. 6 illustrates the standard architecture of a Storm 
cluster. The whole cluster consists of two types of nodes: one 
master node and multiple worker nodes. The master node runs 
a daemon process called Nimbus responsible for assigning 
spout and bolt tasks to the worker nodes and monitoring their 
status for failures. Every worker node runs a Supervisor 
daemon process, which manages the resources on the local 
node, and accepts task assignments from the Nimbus. Spout 
and bolt tasks are launched as parallel threads in worker 
processes. The number of worker processes on each node is 
configurable as a system parameter. The number of threads to 
run for each type of spout and bolt in a topology can be 
configured through the parallelism parameters. Fault tolerant 
coordination between the Nimbus and the Supervisors uses 
Zookeepers [7]. 

Storm adopts the ‘pull-based’ message passing model 
between the processing elements. Bolts pull messages from the 
upstream bolts or spouts. This ensures that bolts will never get 
excessive workload that they cannot handle. Therefore, 



overflow can only happen at the spouts. This model allows us 
to test our algorithm easily at different levels of parallelism. 
For example, we can implement spouts that generate streams 
by reading data from a file, and control their paces based on the 
number of acknowledgements received for tuples that have 
been processed. This will prevent the topology from getting 
overwhelmed by too much data no matter how slowly the bolts 
are working. 

 
Fig. 6. Storm architecture 

B. Implementation with Cluster-Delta Synchronization 
Cloud DIKW implements the parallel version of the 

algorithm in a Storm topology, as illustrated in Fig. 7. There is 
one type of spout, Protomeme Generator Spout, and two types 
of bolts, Clustering Bolt and Synchronization Coordinator 
Bolt. For simplicity, we call them protomeme generator, cbolt, 
and sync coordinator. At runtime, there is one instance of the 
protomeme generator, multiple instances of cbolts working in 
parallel, and one instance of sync coordinator. A separate 
synchronization channel is created between the cbolts and the 
sync coordinator using the ActiveMQ pub-sub messaging 
system [5]. ActiveMQ allows client applications to connect to 
message brokers, and register themselves as publishers or 
subscribers to various topics. Publishers can produce messages 
and publish them to a certain topic, and the message broker 
will automatically deliver the messages to all the subscribers of 
that topic. In our topology, the sync coordinator is registered as 
a publisher to a topic named “clusters.info.sync”, and all the 
cbolts are registered as subscribers to this topic. The lifetime of 
the whole topology can be divided into two phases, an 
initialization phase and a running phase. We introduce the 
working mechanism of each type of spout and bolt in both 
phases. 

 
Fig. 7. Storm topology for the parallel stream clustering algorithm 

Protomeme Generation and Distribution 

During the initialization phase, every processing element 
reads some information from a bootstrap file. The protomeme 
generator reads the start time of the current time step, the 
length of a time step in seconds, and the length of a time 
window in steps. After reading this information, the generator 
can either connect to an external stream of tweets or open a file 
containing tweets for generating protomemes. 

During the running phase, the protomeme generator keeps 
reading and buffering tweets for the “current” time step, until it 
identifies a tweet falling into the next time step. Then it 
generates protomemes using the buffered tweets. Every 
protomeme is associated with a creation timestamp and an 
ending timestamp, which are set based on  the timestamp of the 
earliest and latest tweet in the protomeme. To facilitate the 
construction of diffusion vectors of protomemes, an in-
memory index structure is maintained to record the mapping 
between each tweet ID and the set of user IDs who have 
retweeted it. To construct the diffusion vector of a protomeme, 
the user IDs of the tweet authors and the user IDs mentioned in 
its tweets are first added to the vector. Then the index is 
queried for each tweet ID of the protomeme, and the 
corresponding user IDs found in the index are added to the 
vector. The protomeme generator emits one tuple to its output 
stream for every newly generated protomeme. The tuples are 
evenly distributed among all the parallel cbolts based on the 
hash values of their markers. Therefore, protomemes generated 
in different time steps but sharing the same marker will always 
be processed by the same cbolt. 

Protomeme Clustering 

During the initialization phase, the cbolts and sync 
coordinator first read the same time window parameters as the 
protomeme generator; then they read the input parameter n 
(number of standard deviations for outlier detection), and a list 
of initial clusters. The initial clusters are generated by running 
either a parallel batch clustering algorithm, or the sequential 
stream clustering algorithm over a small batch of data from 
recent history. The initial values of μ and σ are then generated 
based on the protomemes contained in the initial clusters. 

During the running phase, protomemes are processed in 
small batches. A batch is defined as the number of protomemes 
to process, which is normally configured to be much smaller 
than the total number of protomemes in a single time step. 
Upon receiving a protomeme, the cbolt first checks its creation 
timestamp to see if it starts a new time step. If so, the cbolt will 
first advance the current time window by one step, and delete 
all the old protomemes falling out of the time window from the 
clusters. Then it performs the outlier detection procedure and 
protomeme-cluster assignment in the same way as in the 
sequential algorithm, based on the current clusters and μ, σ 
values. If the protomeme is an outlier, an OUTLIER tuple 
containing the protomeme will be emitted to the sync 
coordinator. If it can be assigned to a cluster, a PMADD tuple 
will be emitted. Note that the cbolt does not immediately create 
a new cluster with the outlier protomeme, because outlier 
protomemes detected by different cbolts may be similar to each 
other and thus should be grouped into the same cluster. Such 
global grouping can only be done by the sync coordinator, 
which collects OUTLIER tuples generated by all the cbolts. For 



the case of PMADD, the centroid of the corresponding cluster 
is not immediately updated either. Instead, clusters are only 
updated during the synchronization between two consecutive 
batches. This ensures that within the same batch, different 
cbolts are always comparing their received protomemes against 
the same set of global clusters. 

Within each batch, the sync coordinator maintains a list of 
“cluster delta” data structures and another list of outlier clusters. 
Upon receiving a PMADD, it will simply add the protomeme 
contained in the tuple to the delta structure of the 
corresponding cluster, and change the latest update time of the 
delta structure to the ending timestamp of the protomeme in 
case the ending timestamp is larger. Since the sync coordinator 
collects PMADD from all parallel cbolts, the delta structures 
will contain the global updates to each cluster. For an 
OUTLIER tuple, it will first check whether the protomeme 
contained in the tuple can be assigned to any existing outlier 
cluster. If so, it is simply added to that outlier cluster; 
otherwise a new outlier cluster is created and appended to the 
list of outlier clusters. After processing each tuple, the values 
of μ and σ are dynamically updated. 

Synchronization 

As a final step of the initialization phase, the cbolts and 
sync coordinator connect to an ActiveMQ message broker and 
register as subscribers and the publisher. Since the cbolt tasks 
run as threads in worker processes, they first go through an 
election step to select one representative thread within each 
process. Only the representative thread will be registered as a 
subscriber, and the synchronization message received will be 
shared among the threads in the same process. This election 
step can significantly reduce the amount of data transmission 
caused by synchronization. 

At the running phase, a synchronization procedure is 
launched when the number of processed protomemes reaches 
the batch size. The whole procedure consists of three steps as 
detailed in Fig. 8: SYNCINIT, SYNCREQ, and CDELTAS. 
The SYNCINIT step initiates the procedure and notifies the 
cbolts to start synchronization. In the SYNCREQ step, each 
cbolt will temporarily stop processing incoming protomemes, 
and emit a SYNCREQ tuple. After receiving SYNCREQ from 
all the cbolts, the sync coordinator will sort the deltas of all the 
clusters (including the outlier clusters) by the latest update time, 
and pick the top K with the highest values to construct a 
CDELTAS message, which also contains latest global values of 
μ and σ. The message is then published through ActiveMQ. 
Upon receiving CDELTAS, every cbolt will update their local 
copy of clusters and μ, σ values to a new global state, then 
resume processing the protomemes for the next batch. Note 
that the SYNCINIT step and the temporary stopping of the 
cbolts are necessary to ensure that protomemes processed by 
different cbolts and received by the sync coordinator are 
always handled with regards to the same global view of the 
clusters. Since the size of CDELTAS is normally small and 
stable, the synchronization step can usually finish in a short 
time, as will be demonstrated in Section V. 

In order to achieve the best performance for the whole 
synchronization procedure, an optimal solution for SYNCINIT 
is also necessary. We tested three methods in this regard. With 

spout initiation, the protomeme generator counts the number 
of protomemes emitted and broadcasts a SYNCINIT tuple 
through Storm when the batch size is reached. With cbolt 
initiation, each cbolt counts the number of protomemes 
processed by itself and directly emits a SYNCREQ tuple when 
it reaches the expected average. This method is similar to the 
synchronization mechanism used in typical iterative batch 
algorithms. However, due to the buffering effect of Storm and 
varied processing speed among cbolts, both methods suffer 
from a large variance in the SYNCREQ time observed by 
different cbolts. The variance can reach the level of seconds 
and totally eliminate the benefits of the cluster-delta strategy. 
This suggests that, due to the dynamic nature of streaming 
analysis, synchronization should be handled differently than in 
batch algorithms. To address this issue, we propose sync 
coordinator initiation as illustrated in Fig. 8. In this method, 
the sync coordinator counts the total number of PMADD and 
OUTLIER received, and publishes a SYNCINIT message using 
ActiveMQ if the batch size is reached. Because of the pushing-
mode of message delivery and the small size of the message, it 
can be received by the cbolts within milliseconds. Therefore 
the large variance problem is avoided. 

 
Fig. 8. Storm topology for the parallel stream clustering algorithm 

C. Implementation with Full-Centroids Synchronization 
To verify the effectiveness of our cluster-delta 

synchronization strategy, we implement another version of the 
parallel algorithm using the full-centroids strategy for 
comparison. The protomeme generation and processing logics 
of the full-centroids version are mostly the same as the cluster-
delta version. There are, however, major differences in the 
implementation caused by the full-centroids strategy: during 
the processing time of each batch, the sync coordinator will 
maintain a full list of existing clusters, instead of their delta 
structures. During the synchronization time, instead of the 
CDELTAS message, it will generate a CENTROIDS message, 
which contains the whole centroid vectors of the clusters with 
the top K latest update times. Upon receiving the CENTROIDS 
message, every cbolt will use the centroid vectors contained in 
the message to replace the centroids of the old clusters. 

Since the cbolt receives the centroid vectors rather than  the 
incremental protomemes of each cluster, it can no longer 
maintain a full record of all the protomemes in the clusters. 
Therefore, the task of new time step detection and old 
protomeme deletion is moved to the sync coordinator. Since 
the centroids update time is negligible, if compared to the 
similarity compute time, this has little impact on the overall 
performance of the algorithm. 



V. EVALUATION OF THE PARALLEL ALGORITHM 
We verify the correctness of our parallel algorithm by 

comparing its results with the sequential implementation, and 
evaluate its efficiency and scalability through comparison with 
the full-centroids synchronization strategy. Our tests run on a 
private eight-node cluster called “Madrid”. The hardware 
configuration of each node is listed in Table II. Each node runs 
RHEL 6.5 and Java 1.7.0_45. The Cloud DIKW environment 
is constructed with Hadoop 2.5.0, HBase 0.96.0, Storm 0.9.2, 
and ActiveMQ 5.4.2. An ActiveMQ broker is deployed on the 
same node where the Storm Nimbus runs. Each node is 
configured to run at most four Storm worker processes, and the 
parallel instances of spouts and bolts are launched as threads 
spawned by these worker processes. The maximum heap size 
of each worker process is set to 11GB. Message compression 
with zip is enabled for ActiveMQ, and only one message 
broker is used in all tests of the parallel implementations. 

TABLE II.  PER-NODE HARDWARE CONFIGURATION OF MADRID 

CPU RAM Hard Disk Network 
4 * 4 Quad-Core AMD 
Opteron 8356 2.3G Hz 48GB 4 TB HDD 

+ 1TB SSD 1Gb Ethernet 

A. Correctness Verification 
To test the correctness  of our algorithm, we use the same 

ground truth dataset and LFK-NMI measurement as [29]. The 
LFK-NMI value is a number between 0 and 1 that indicates the 
degree of matching between two sets of result clusters. A value 
of 1 corresponds to a perfect matching, while a value of 0 
means that the two sets of clusters are completely disjoint. The 
ground truth dataset was collected from the Twitter gardenhose 
stream [25] within the week of 2013-03-23 to 2013-03-29. It 
includes all the tweets containing the Twitter trending hashtags 
[36][16] identified during that time. 

We first define the ground truth clusters as the sets of 
tweets corresponding to each trending hashtag: all tweets 
sharing a common trending hashtag are grouped into one 
separate cluster. Note that, since a tweet may contain multiple 
trending hashtags, the ground truth clusters may have overlaps. 
We then remove the trending hashtags from the content of all 
tweets, and run both the sequential implementation from [29] 
and our parallel implementation over the remaining dataset. As 
a result, protomemes corresponding to the trending hashtags 
will not be created and used as input data points to the 
clustering process. This is done to avoid giving an unfair 
advantage to protomeme-based algorithms that use hashtag 
information. Finally, we compute three LFK-NMI values: 
results of the sequential algorithm versus the ground truth 
clusters, results of the parallel algorithm versus the ground 
truth clusters, and results of the sequential versus the parallel 
algorithm. We use the same input parameters as the 
experiments completed in [29]: K = 11, t = 60 minutes, l = 6, 
and n = 2. For the parallel algorithm, we use two parallel cbolts 
and a batch size of 40. 

Table III presents the LFK-NMI scores using the final 
clusters generated by the two algorithms. The high value of 
0.728 in the first column indicates that the clusters generated 
by our parallel implementation match very well with the results 

of the original sequential implementation in [29]. Moreover, 
values in the second and third column suggest that, when 
measured against the same ground truth clusters, our parallel 
implementation can achieve a degree of matching comparable 
or better (we observe an improvement of around 10%) than the 
sequential implementation. These scores show that our parallel 
implementation is correct and can generate results that are 
consistent with the sequential algorithm. The value 0.169 is 
consistent with the original test results in [29]. Furthermore, 
the slightly higher value of 0.185 indicates that processing the 
protomemes in small batches may be helpful for improving the 
quality of the clusters. 

TABLE III.  LFK-NMI VALUES FOR CORRECTNESS VERIFICATION 

Parallel vs. 
Sequential 

Sequential vs. 
ground truth 

Parallel vs. ground 
truth 

0.728 0.169 0.185 

B. Performance Evaluation 
To evaluate the performance and scalability of our parallel 

algorithm in Cloud DIKW, we use a raw dataset collected from 
the Twitter gardenhose stream without applying any type of 
filtering. It contains a total number of 1,284,935 tweets 
generated within one hour (from 05:00:00 AM to 05:59:59 
AM) on 2014-08-29. We first run the sequential algorithm over 
the whole dataset using input parameters  K = 240, t = 30 
seconds, l = 20, and n = 2, and measure the total processing 
time. Note that the time window has a length of 10 minutes and 
thus may contain a large number of protomemes. Then we run 
the two parallel implementations at different levels of 
parallelism, and measure their  processing time, speedup, and 
other important statistics. We use the clusters generated for the 
first 10 minutes of data as the bootstrap clusters, and process 
the following 50 minutes of data using the parallel algorithms. 
The average number of protomemes generated in each time 
step is 19908, and the batch size is set to 6144. 

The total processing time of the sequential algorithm is 
156,340 seconds (43.43 hours), and the time spent on 
processing the last 50 minutes of data is 139,950 seconds 
(38.87 hours). Fig. 9 compares the total processing time of the 
two parallel implementations, and some important statistics are 
given in Table IV and V. Numbers in brackets in the first 
column tell how many Storm worker processes were used for 
hosting the cbolt threads. These correspond to the total 
numbers of ActiveMQ receivers in each run. Here we list the 
numbers that delivered the best overall performance. The 
length of the synchronization message in the last column is 
measured before ActiveMQ runs any compression. Fig. 10 
compares the scalability of the two parallel implementations 
(the blue line and the red line). 

TABLE IV.  STATISTICS FOR FULL-CENTROIDS VERSION 

Number of cbolts 
(worker processes) 

Comp time 
/ sync time 

Sync time per 
batch (sec) 

Avg. length of 
sync message 

3             (1) 31.56 6.45 22113520 

6             (1) 15.53 6.51 21595499 

12           (2)  7.79 6.60 22066473 



Number of cbolts 
(worker processes) 

Comp time 
/ sync time 

Sync time per 
batch (sec) 

Avg. length of 
sync message 

24           (4) 3.95 6.76 22319413 

48           (7) 1.92 7.09 21489950 

96           (28) 0.97 8.77 21536799 

 

TABLE V.  STATISTICS FOR CLUSTER-DELTA VERSION 

Number of cbolts 
(worker processes) 

Comp time / 
sync time 

Sync time per 
batch (sec) 

Avg. length of 
sync message 

3              (1) 289.18 0.54 2525896 

6              (1) 124.62 0.56 2529779 

12            (2) 58.45 0.58 2532349 

24            (4) 27.44 0.64 2544095 

48            (7) 11.96 0.76 2559221 

96            (28) 5.95 0.89 2590857 

 
Fig. 9. Total processing time: cluster-delta vs. full-entroids 

 
Fig. 10. Scalability comparison between cluster-delta and full-entroids 

Table IV demonstrates that due to the large size of the 
cluster centroids, the full-centroids strategy generates a large 
synchronization message over 20 MB, and incurs a long 
synchronization time in every batch. In addition, the 
synchronization time increases as the number of parallel cbolts 
increases, because the single ActiveMQ broker needs to send a 
large message to more subscribers. The total processing time 
for the case of 96 parallel cbolts is dominated by 
synchronization. As a result, the full-centroid algorithm 
demonstrates poor scalability, and stops getting faster after 48 
parallel cbolts. 

In comparison, the cluster-delta strategy generates a much 
smaller synchronization message, and thus keeps the per-batch 
synchronization time at a low level, as shown in Table V. The 

zip compression of ActiveMQ provides a compression ratio of  
about 1:6, so the actual message size sent over the network is 
less than 500KB. As the number of parallel cbolts increases, 
the computation time covers the major part of the total 
processing time for all cases. The parallel implementation 
using the cluster-delta strategy can achieve a near-linear 
scalability for up to 48 parallel cbolts. Overall, it demonstrates 
sub-linear scalability. Using 96 parallel cbolts, it finishes 
processing the 50 minutes’ worth of data in 1,999 seconds 
(33.3 minutes), thus keeping up with and surpassing the speed 
of the Twitter gardenhose stream. Note that even for the case 
of 96 parallel cbolts, the per-batch synchronization time is still 
relatively low. A major reason for the relatively low speedup of 
70.0 is lack of computation, because each cbolt only processes 
about 64 protomemes per batch. In case of longer time steps or 
faster data rate, it is possible to extend the near-linear-
scalability zone to larger numbers of parallel cbolts by 
increasing the batch size. To verify this, we use a dataset 
containing 2,258,821 tweets for 1h (1:00:00 PM to 2:00:00 
PM) on 2014-08-29, and run the same tests on a different 
computer cluster called “Moe” with better CPU and network 
configuration (Table VI). 1-2pm is the peak hour of day when 
gardenhose generates the most tweets. The average number of 
protomemes in each time step is 35358, and we set the batch 
size to 12288. The speed-ups are illustrated by the green line in 
Fig. 10. Due to larger CDELTAS messages, the sync time per 
batch for 96 parallel cbolts increases to 0.979 seconds, despite 
the faster network. However, since the batch size is large, we 
are able to retain the near-linear scalability, and finish 50 
minutes’ worth of data in 2345 seconds (39 minutes). 

TABLE VI.  PER-NODE HARDWARE CONFIGURATION OF MOE 

CPU RAM Hard Disk Network 
5 * Intel 8-core E5-
2660v2 2.20GHz 128GB 48 TB HDD + 

120GB SSD 
10Gb 
Ethernet 

VI. CONCLUSIONS AND FUTURE WORK 
Cloud DIKW is an analysis environment that supports 

integrated batch and streaming processing. We have 
investigated it to efficiently support parallel social media 
stream clustering algorithms. This research leads to some 
important conclusions. Firstly, the distributed stream 
processing framework used in Cloud DIKW provides a 
convenient way to develop and deploy large-scale stream 
processing applications. Yet in order to properly coordinate the 
dynamic synchronization between parallel processing workers, 
their DAG-oriented processing models need additional 
coordination tools that we successfully implemented here with 
pub-sub messaging. Generalizing this to other applications is 
an important research area and could lead to such desirable 
synchronization capability being added to Apache Storm 

Moreover, the parallelization and synchronization strategies 
may differ depending on the data representations and similarity 
metrics of the application. For example, we observed that the 
high-dimensionality and sparsity of the data representation in 
our application led to nontrivial issues addressed here for both 
computation and communication. By replacing the traditional 
full-centroids synchronization strategy with the new cluster-
delta strategy, our parallel algorithm is able to be scalable, and 



keep up with the speed of the real-time Twitter gardenhose 
stream with less than 100 parallel workers. 

There are several interesting directions that we will explore 
in the future. We will integrate advanced collective 
communication techniques as implemented by the Iterative 
MapReduce Hadoop plugin Harp [33] into Cloud DIKW, and 
use them to improve the synchronization performance of both 
batch and streaming algorithms. Instead of using a “gather and 
broadcast” communication model, Harp can organize the 
parallel workers in a communication chain, so that the local 
updates generated by each worker can be transmitted through 
all the other workers in a pipeline. According to our earlier 
attempts [37] to apply this technique in the Twister iterative 
MapReduce framework [21], it can significantly reduce the 
synchronization time and ensure that the algorithm achieves 
near linear scalability. With improved synchronization speed, 
we can process the data at the rate of the whole Twitter 
firehose stream [34], which is about 10 times larger than 
gardenhose. To support higher data speed and larger time 
window sizes, we may apply the sketch table technique as 
described in [12] in the clustering bolts and evaluate its impact 
on the accuracy and efficiency of the whole parallel program. 
Variations in arrival rate and jitter in event distribution exist in 
many real-time data streams. Therefore, we will also make the 
parallel algorithm elastic to accommodate this irregularity in 
event arrival. 
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