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ABSTRACT 

The development of data intensive problems in recent years has 

brought new requirements and challenges to storage and 

computing infrastructures. Researchers are not only doing batch 

loading and processing of large scale of data, but also demanding 

the capabilities of incremental updates and interactive analysis. 

Therefore, extending existing storage systems to handle these new 

requirements becomes an important research challenge. This 

paper presents our efforts on IndexedHBase, a scalable, fault-

tolerant, and indexed NoSQL table storage system that can satisfy 

these emerging requirement in an integrated way. IndexedHBase 

is an extension of the cloud storage system HBase. Modeled after 

Google's BigTable, HBase supports reliable storage and efficient 

access to terabytes or even petabytes of structured data. However, 

it does not have an inherent mechanism for searching field values, 

especially full-text field values. IndexedHBase solves this issue 

by adding support for an inverted index to HBase, and storing the 

index data with HBase tables. Leveraging the distributed 

architecture of HBase, IndexedHBase can achieve reliable index 

data storage, fast real-time data updating and indexing, as well as 

efficient parallel data analysis using Hadoop MapReduce. 

Exploiting the inverted index, IndexedHBase employs three 

different searching strategies to support interactive data analysis. 

In order to evaluate IndexedHBase in large scale HPC systems, 

we extend the MyHadoop framework and provide MyHBase, 

which can dynamically build a one-click HBase deployment in an 

HPC job, and automatically finish related tasks. We test the 

performance of IndexedHBase with the ClueWeb09 Category B 

data set on 101 nodes of the Quarry HPC cluster at Indiana 

University. The performance results show that IndexedHBase not 

only satisfies the requirements for fast incremental data updating, 

but also supports efficient large scale batch processing over both 

text and index data. Moreover, by intelligently selecting suitable 

strategies, searching performance for interactive analysis can be 

improved by one to two orders of magnitude. 

Categories and Subject Descriptors 

H.3.1 [Content analysis and Indexing]: Indexing methods – full-

text indexing in NoSQL databases.  

General Terms 

Algorithms, Design, Experimentation, Performance, Measurement, 

Reliability. 

Keywords 

HBase, Inverted Index, Data Intensive Computing, Real-time 

Updating, Interactive Analysis. 

1. INTRODUCTION 
Data intensive computing has been a major focus of scientific 

computing communities in the past several years, and the 

development of data intensive problems has brought new 

requirements and challenges to storage and computing 

infrastructures. Researchers nowadays are not only doing batch 

loading and processing of big data, but also demanding 

capabilities of incremental updating [] and interactive searching 

and analysis [] from the data storage systems. Distinctly from 

batch loading, incremental data updating handles relatively small 

pieces of data, and finishes in real-time. Similarly, interactive 

searching and analysis also targets a relatively small portion of 

data, and requires a response time of seconds or minutes. For 

example, social network researchers may want to dynamically 

collect data from Twitter or Facebook and save them in real-time, 

and then issue queries like "what is the age distribution of all the 

people who have talked about Los Angeles Lakers in their status 

in the last 6 months?", and expect to get an answer in seconds or 

minutes. 

While many existing systems for data intensive problems can 

handle data loading and processing in large batches very well, 

adding support for real-time updating and interactive analysis to 

them remains a research problem. Inspired by previous 

developments in the fields of information retrieval and database 

technologies, we believe indexing is the key towards efficient 

search and interactive analysis. Specifically, in order to create a 

suitable and powerful indexing mechanism for data intensive 

systems, we need to resolve the following research challenges: 

(1) In case of large data size, how can we support reliable and 

scalable index data storage, as well as high-performance index 

access speed? 

(2) How can we achieve both efficient batch index building for 

existing data and fast real-time indexing for incremental data? 

(3) How do we design and choose proper searching strategies that 

can make good use of the indices to support interactive analysis? 

(4) While functionalities of real-time updating and interactive 

analysis are added, how can we retain the existing capability of 

large scale data processing, and extend it to analysis over both 

original data and index data? 

(5) How can we evaluate our solutions for these issues with large 

data sizes and on large-scale systems? 
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This paper presents our efforts towards addressing these 

challenges. Our work is based on a well-known cloud storage 

system, HBase []. Modeled after Google's BigTable [], HBase can 

support scalable storage and efficient access to terabytes or even 

petabytes of structured data. Besides, HBase is naturally 

integrated with the Hadoop [] MapReduce framework, thus it can 

support efficient batch analysis through large scale parallel 

processing. However, it does not provide an inherent mechanism 

for searching field values, especially for full-text field values. 

Searching and selective analysis can only be done by scanning the 

whole data set and finding the target data records, which is 

obviously inefficient and not suitable for interactive analysis. 

There are existing efforts about building indices to facilitate field 

value search in HBase, but they either do not consider full-text 

field values [], or do not have enough support for efficient batch 

index building and large scale index data analysis []. 

In this paper, we focus on the issue of full-text value search in 

HBase, and propose to solve it by involving the usage of inverted 

index. Figure 1 shows an example fragment of an inverted index. 

For a given set of text documents, where each document is 

composed of a set of different terms (or words), an inverted index 

records for each term, the list of documents that contain it in their 

text? Specifically, it contains information about the frequencies 

and positions of terms in documents, as well as (in some cases) 

the degree of relevance between terms and documents. 

 

Figure 1. An example fragment of inverted index. 

The inverted index technology has been widely used in 

information retrieval systems for searching text data, and the most 

well known implementation is the Apache Lucene library []. 

However, most existing Lucene-based systems, such as Solr [], 

maintain index data with files, and thus do not have a natural 

integration with HBase. Therefore, we propose a novel framework 

that can build inverted indices for text data in HBase, and store 

inverted index data directly as HBase tables. We call this 

framework IndexedHBase. Leveraging the distributed architecture 

of HBase, IndexedHBase can achieve reliable and scalable index 

data storage, as well as high performance for index data access. 

Moreover, by choosing proper searching strategies based on 

inverted indices, IndexedHBase can improve searching 

performance by several orders of magnitude, and therefore 

supports interactive analysis very well. 

We use the ClueWeb09 Category B data set [] to test the 

effectiveness and performance of IndexedHBase, and carry out 

our experiments on 101 nodes of the Quarry HPC cluster [] at 

Indiana University. The following sections will explain, analyze, 

and verify our design and implementation choices towards solving 

the abovementioned research challenges. Section 2 gives a brief 

introduction about HBase. Section 3 describes the system design 

and implementation of IndexedHBase. Section 4 presents and 

analyzes the performance experiments of IndexedHBase in terms 

of parallel index building, real-time updating, distributed index 

access, and searching. Section 5 demonstrates the advantage of 

IndexedHBase in parallel data analysis with a synonym mining 

application. Section 6 compares IndexedHBase with related 

technologies, and Section 7 has our conclusion and outlines our 

future work. 

2. HBASE 
HBase is an open-source, distributed, column-oriented, and 

sorted-map datastore modeled after Google’s BigTable. Figure 2 

illustrates the data model of HBase. Data are stored in tables; each 

table contains multiple rows, and a fixed number of column 

families. For each row, there can be a various number of qualifiers 

within each column family, and at the intersections of rows and 

qualifiers are table cells. Cell contents are uninterpreted byte 

arrays. Cell contents are versioned, and a table can be configured 

to maintain a certain number of versions. Rows are sorted by row 

keys, which are also implemented as byte arrays. 

 

Figure 2. An example of the HBase data model. 

Figure 3 shows the architecture of HBase. At any time, there can 

be one working HBase master and multiple region servers running 

in the system. One or more backup HBase masters can be set up to 

prevent single point of failure. Apache ZooKeeper [] is used to 

coordinate the activities of the master and region servers. Tables 

are horizontally split into regions, and regions are assigned to 

different region servers by the HBase master. Each region is 

further divided vertically into stores by column families, and 

stores are saved as store files in HDFS. Data replication in HDFS 

and region server failover ensures high availability of table data. 

Load balance is done through dynamic region splitting, and 

scalability can be achieved by adding more data nodes and region 

servers. 

 

Figure 3. HBase architecture. 

Based on this distributed architecture, HBase can support efficient 

access to huge amounts of data, and can be considered as a good 

candidate for meeting our identified requirements for supporting 

data intensive applications. However, it does not provide a native 

mechanism for searching field values, and thus cannot satisfy the 

requirement for interactive analysis. There are existing projects 

and work on building indices to facilitate field value search in 

HBase, but they either do not target full-text field values, or do 

not provide efficient solutions for batch index building and large 

scale index data analysis. Therefore, to solve this problem, we 

suggest building an inverted index for full-text data in HBase, and 

storing this index data in HBase tables. The next section will 

present and discuss the details about the design and 

implementation of our new system IndexedHBase. 



 

 

3. INDEXEDHBASE DESIGN AND 

IMPLEMENTATION 

3.1 Design of Table Schemas 
In order to store text data and index data in HBase tables, proper 

table schemas are needed. Figure 4 illustrates major table schemas 

in IndexedHBase. Since the ClueWeb09 data set is composed of 

HTML web pages crawled from the Internet, we design the first 

table schema in Figure 4 to store the text contents of these web 

pages. For convenience of expression, we also call these web 

pages "documents". This table is named "CW09DataTable". Each 

row in the table contains data of one document, and the row key is 

a unique document ID. There is only one column family in this 

table, named "details". Each row has two columns in this column 

family. The "URI" column records the URI of each web page, and 

the "content" column contains the text data extracted from its 

HTML content. 

 

Figure 4. Major table schemas in IndexedHBase. 

Inverted indices normally contain two types of information about 

terms' appearances in documents: their frequencies and positions. 

Correspondingly, we design two table schemas to store them in 

IndexedHBase, as illustrated by the second and third schema in 

Figure 4. Term values are used as row keys in both schemas, so 

each row contains inverted index information for one unique term. 

The CW09FreqTable contains one column family named 

"frequencies". Under this column family, each row has a different 

number of columns. Each column records one document 

containing the corresponding term as specified by the row key: the 

column name is the document ID, and the cell value is the 

frequency of that term in that document. The CW09PosVecTable 

also contains only one column family, named "positions". The 

columns for each row in this table are similar to CW09FreqTable; 

the only difference is that the cell values are vectors that record 

terms' positions in documents, instead of frequencies. 

Using these tables to store index data brings the following 

advantages to IndexedHBase: 

(1) Leveraging the distributed architecture of HBase, 

IndexedHBase can provide high availability for index data storage, 

and high performance for distributed index data access. Our 

performance evaluations in section 4 will verify this expectation. 

(2) Although the information in CW09FreqTable can be totally 

reconstructed by scanning the CW09PosVecTable, we are still 

keeping a separate table for it. This is because these two tables 

may be needed in different searching context or data analysis 

applications. As will be demonstrated in section 5, in many cases 

only the frequencies information is needed. Since the row size of 

CW09PosVecTable is mostly much larger than CW09FreqTable, 

keeping a separate CW09FreqTable can help reduce the size of 

data transmission by a large portion. 

(3) Since rows are sorted by row keys in HBase, it is easy to  do a 

complete range scan of terms in index tables. This can be very 

helpful for evaluating queries containing wild characters, such as 

"ab*". Besides, since the qualifiers (document IDs) in each row 

are also sorted internally by HBase, it is easy to merge the index 

records for multiple terms. 

(4) Since HBase is designed for efficient random access to cell 

data in tables, IndexedHBase can support very fast real-time 

document updates. The insertion, update, or deletion of a 

document only involves random write operations to a limited 

number of rows in these tables, and has little impact on the overall 

system performance, because HBase supports atomic operations at 

row level. According to our performance tests in section 4, real-

time document updates can be completed at the level of 

milliseconds. Therefore, although temporary data inconsistency 

can happen during a document update, eventual consistency can 

be guaranteed within a very short time window. 

(5) Based on the original support for Hadoop MapReduce in 

HBase, we can develop efficient parallel algorithms for building 

inverted indices. Furthermore, researchers are also able to 

implement MapReduce applications to complete large scale 

analysis using both text data and index data. 

These advantages of IndexedHBase can help address research 

challenges (1), (2), and (4) as discussed in section 1. 

3.2 System Workflow and Experiments 
To testify the effectiveness and efficiency of IndexedHBase, we 

need to carry out a series of experiments on a large enough test 

bed and with a large enough data set. Moreover, we need a 

experimental environment where we can flexibly change testing 

parameters such as scale of system and data, number of clients, 

etc. Considering these factors, we choose to use the Quarry HPC 

cluster at Indiana University to launch our experiments. Since 

resource allocations in Quarry are completed at the level of HPC 

jobs, we need to organize our experiments into a proper workflow 

within a job, as illustrated in Figure 5. 

After getting the required resources, the first task is to create a 

dynamic HBase deployment on the allocated nodes. We modify 

the MyHadoop [] software to implement this task. MyHadoop is a 

software package that can be used to dynamically construct a 

distributed Hadoop deployment in an HPC environment. It is 

mainly composed of two parts: a set of template Hadoop 

configuration files, and a set of scripts working with HPC job 

systems, which apply for HPC nodes, configure nodes as Hadoop 

masters and slaves, start Hadoop daemon processes on these 

nodes, and then launch MapReduce jobs on the constructed 

Hadoop system. The flow chart of the MyHadoop scripts is shown 

at the left side of Figure 6. We add template configuration files for 

HBase to MyHadoop, and then add operations in the scripts for 

configuring ZooKeeper, HBase master and region servers, and for 

starting HBase daemon processes and applications. We call our 

modified MyHadoop package "MyHBase", and the flow chart is 

shown at the right side of Figure 6. 



 

 

 

Figure 5. System workflow of IndexedHBase experiments. 

 

 

Figure 6. MyHadoop and MyHBase. 

After the first task in the workflow is completed, HBase and 

Hadoop will be running and available for data storage and 

MapReduce job execution. The second task is a MapReduce 

program that loads data from the ClueWeb09 Category B data set 

to CW09DataTable in HBase. The ClueWeb09 data set is 

originally stored in the form of multiple .warc.gz files, so this 

program first splits all these files into different groups, then 

assigns these groups to a set of mapper tasks. Each mapper will 

read HTML web pages from the files of its groups, and then 

output HBase "Put" objects for each page, which will then be 

handled by HBase and inserted as rows to CW09DataTable. 

After data are loaded to CW09DataTable, they can be used in two 

ways. On one hand, we can run MapReduce programs to generate 

CW09FreqTable and CW09PosVecTable, which will be accessed 

and tested in a series of performance evaluation experiments. On 

the other hand, text data in CW09DataTable and index data in 

CW09FreqTable and CW09PosVecTable can both be useful in 

various data analysis applications, such as the LC-IR synonym 

mining analysis [] in our workflow. Implementation of the index 

building program will be presented in section 3.3; details about 

the LC-IR synonym mining analysis will be discussed in section 5. 

Our system workflow and tasks design address the research 

challenge (5) as mentioned in section 1. 

3.3 Implementation of the Inverted Index 

Building Task 

3.3.1 Overall Index Building Strategy  
The index building task in the work flow takes the documents in 

CW09DataTable as input, builds inverted index for them, and 

then stores index data into CW09FreqTable and 

CW09PosVecTable. We use the HBase bulk loading strategy to 

finish this process, because this is the most efficient way to load 

data into HBase tables in large batches. The whole process 

consists of the following two steps: 

(1) Run a MapReduce program to scan CW09DataTable, build 

inverted index for all documents, and write index data to HDFS 

files in the HFile format, which is the file format HBase internally 

uses to store table data in HDFS. 

(2) Import the HDFS files generated in step (1) to 

CW09FreqTable or CW09PosVecTable using the 

"CompleteBulkLoad" tool provided by HBase. 

Step (2) normally finishes very fast (in seconds), and the major 

work is done in step (1). For step (1), we build two MapReduce 

programs to separately generate data for CW09FreqTable and 

CW09PosVecTable. This section only explains the 

implementation of the program for CW09FreqTable, and the 

implementation for CW09PosVecTable is similar. 

3.3.2 HFile Format  
Since the MapReduce index building program generates HFiles as 

output, we need to give a briefly description to the HFile format 

first. Figure 7 illustrates the HFile format. As described in section 

2, one HFile contains data for one column family in one region of 

a table. The major part of an HFile is composed of (key, value) 

pairs. A key is composed of four components: row key, column 

family, qualifier, and timestamp; it defines a specific position with 

an HBase table. A value is just the cell value at the specified 

position. All (key, value) pairs in an HFile are sorted in ascendant 

order by the combination of (row key, column family, qualifier, 

timestamp). In the Java implementation of HBase, (key, value) 

pairs are represented as objects of the KeyValue class. 

 

Figure 7. HFile format []. 

3.3.3 Implementation of the MapReduce index 

building program 
Before the Mapreduce index building program is launched, 

CW09FreqTable is created with a predefined number of regions, 

each having a different row key boundary. The MapReduce job is 

then configured with these regions' information, so that the job 

will launch the same number of reducers, each generating the 

HFile for one region. To generate qualified HFiles, reducers 

output sorted KeyValue objects, and rely on the 

HFileOutputFormat class to write them into correctly formatted 

HFiles. 

The execution of the whole MapReduce job is illustrated in Figure 

8. Inspired by Lin's work on Ivory [], our index building algorithm 



 

 

also relies on the Hadoop MapReduce framework to sort the 

KeyValue objects during the shuffling phase. 

 

Figure 8. MapReduce job execution for index building. 

After the job starts, it launches multiple mapper tasks; each 

mapper is responsible for building inverted index for the 

documents in one region of CW09DataTable. Each row in the 

table is given as one (key, value) input to the mapper, where the 

key is a document ID and the value contains the text content of 

the document. The mapper will process the text of the document, 

count the frequency of each unique term, and generate one index 

record for each term as a KeyValue object. These KeyValue 

objects will then be partitioned by a total order partitioner, so that 

each partition will contain the right set of KeyValue objects for 

one reducer. The MapReduce framework will then sort these 

KeyValue objects, and give them to reducers as input. Each 

reducer will simply pass these sorted KeyValue objects to the 

HFileOutputFormat, which will write them to the corresponding 

HFiles for each region of CW09FreqTable. The pseudo codes for 

the mapper and reducer classes are given in Figure 9. 

 

Figure 9. Mapper and reducer implementation for index 

building program. 

Our efforts on the inverted index building task also address the 

research challenge (2) as mentioned in section 1. The solution for 

challenge (3) will be presented and analyzed in subsection 4.5 of 

the next section. 

4. PERFORMANCE EVALUATIONS 

4.1 Testing Environment Configuration 
We use the ClueWeb09 Category B data set to test the 

performance of IndexedHBase in various aspects, including 

parallel index building, real-time document updating and indexing, 

index data access, and searching. The whole data set contains 

about 50 million web pages; its size is 232GB in compressed form, 

and about 1.5TB after decompression. Data are stored as files in 

gzip-compressed Web Archive (WARC) file format, so each file 

has an extension name of ".warc.gz".  

We use 101 nodes in the Quarry HPC cluster of Indiana 

University to carry out our experiments, and the data set is 

initially stored in the Data Capacitor (Lustre) file system that is 

mounted to Quarry. We use a major part of the data set (about 

93%) for batch data loading and index building tests, and the rest 

for real-time document updating and indexing tests. 

Each node in the testing cluster has two Intel(R) Xeon(R) quad-

core E5410 CPUs at 2.33GHz, 16GB memory, and about 85GB 

local disk storage under the /tmp directory. Each node has two 

1GB Ethernet adapters, and all nodes are connected to the same 

LAN. The operating system running on each node is Red Hat 

Linux version 6 (RHEL 6), and we use Java 1.6, Hadoop 1.0.4, 

HBase 0.94.2, and MyHadoop 0.2a in our tests. Among the 101 

nodes, one is used to run HDFS name node and Hadoop job 

tracker, one is used to run HBase master, and three are used to 

build a ZooKeeper quorum; the other 96 nodes are used to run 

HDFS data nodes and HBase region servers. In HDFS, each data 

node uses a sub-directory under /tmp as the local storage location. 

In HBase, gzip is used to compress data for all tables. The parallel 

index building tests are launched at the scale of 48, 72, and 96 

data nodes to measure the scalability of the index building 

program. All the other tests are done with 96 data nodes. To avoid 

contention to local disk and memory, we set the maximum 

number of mappers and reducers to 4 and 2 on each data node. 

4.2 Index Building Performance Test 
This test measures the performance and scalability of our parallel 

index building algorithm. Figure 10 shows the time used for 

building CW09FreqTable at different cluster sizes, and the results 

for CW09PosVecTable are similar. In case of 96 data nodes, it 

takes about 68 minutes to load data into CW09DataTable, and 181 

minutes to build the inverted index. So the index building time is 

only 2.66 times of the data loading time. Besides, our index 

building performance is also comparable to the performance of 

Ivory's index building program as reported in []. Considering the 

overhead of table operation handling, (key, value) pair sorting, 

and data replication from HBase, our index building algorithm 

proves to be very efficient in building inverted indices for text 

data stored in HBase. Moreover, the index building time gets 

shorter as the number of nodes in the cluster increases, and we get 

a nice speed up of 1.76 when the cluster size is doubled. This 

indicates that our index building program is scalable, and 

IndexedHBase can easily accommodate larger data sets by having 

more resources. 



 

 

 

Figure 10. Parallel index building performance at different 

cluster sizes. 

After the inverted index tables are built, some interesting 

characteristics about the index data are discovered. For example, 

one interesting feature is the document count of each indexed term, 

which means the number of documents containing each term. For 

the whole data set, a total number of 114,230,541 unique terms 

are indexed. However, 73,705,898 (64.5%) of them appear in only 

one document. Only 14,737 (0.01%) of them appear in more than 

10,000 documents. Figure 11 illustrates the logarithmic 

distribution of document count for terms appearing in less than 

10,000 documents, and Figure 12 shows the distribution of 

document count for all other terms. As will be demonstrated in 

section 4.5, this distribution is very useful for completing efficient 

searches. 

 

Figure 11. Logarithmic distribution of document count for 

indexed terms appearing in less than 10,000 documents. 

 

Figure 12. Distribution of document count for indexed terms 

appearing in more than 10,000 documents. 

4.3 Real-time Document Updating and 

Indexing Test 
The update test is done after the major part of the data set is 

loaded and indexed, and it measures the real-time document 

updating and indexing performance of IndexedHBase in practical 

situations where the system already has some preloaded data and 

multiple clients are concurrently updating and indexing 

documents in real-time. In this test, multiple clients are started 

concurrently on different nodes, and each client intensively 

processes all the documents of one .warc.gz file. For each 

document in the file, the client first inserts it into CW09DataTable, 

then creates inverted index records for all terms in the document, 

and finally inserts these records into CW09FreqTable. We vary 

the number of concurrent clients from 1 to 32, and measure the 

aggregate and per-client performance in each case. 

Figure 13 shows the variation of average number of documents 

processed per second (Docs/s) by each client, and Figure 14 

shows the system aggregate performance in this regard. Figure 15 

shows the variation of aggregate throughput in KB/s. We can see 

that as the number of concurrent clients increase, per-client 

performance drops because of intensive concurrent write 

operations to HBase, but the aggregate system throughput and 

number of documents processed per second still increases sub-

linearly. Even in the case of 32 distributed clients, it takes only 

50ms for a client to insert and index one document. This proves 

that IndexedHBase can support dynamic real-time data updates 

from multiple application clients very well. Our system differs 

from the "Near Real-time Search" support in systems like Solr [], 

and document data and index data in IndexedHBase are persisted 

to hard disks as soon as they are written into HBase tables. HBase 

provides row-level atomic operations, so when a document or 

index record is inserted to a table, it only affects the related row 

and has little impact on the performance of the whole system. 

During the update of a document, there could be temporary data 

inconsistency before all index records are inserted, but eventual 

consistency can be guaranteed within a time window of 

milliseconds. 

 

Figure 13. Average number of documents processed per 

second by each client. 



 

 

 

Figure 14. Aggregate number of documents processed per 

second by all clients. 

 

Figure 15. Aggregate data throughput in KB/s by all clients. 

4.4 Index Data Access Test 
The data access test measures random read performance to index 

tables, because this is the access pattern to index data that is 

relevant in most cases. In this test, we also start multiple testing 

clients on different nodes concurrently, and each client will 

randomly read 60000 rows from CW09FreqTable. We also 

measure both per-client performance and aggregate performance 

for the whole system, and the results are illustrated by Figure 16 

and Figure 17. Results for CW09PosVecTable are similar. 

 

Figure 16. Average number of index rows accessed per second 

by each client. 

 

Figure 17. Aggregate number of index rows accessed per 

second by all clients. 

We can observe from Figure 16 that as the number of distributed 

clients increases, the per-client performance only decreases 

slightly; Figure 17 shows that the aggregate number of rows 

accessed per second grows almost linearly. This indicates that 

IndexedHBase scales very well for distributed index access 

workload, and can potentially support high volumes of search 

evaluations in practice. 

4.5 Searching Performance Tests 
Section 4.1 to 4.4 show that IndexedHBase is efficient and 

scalable in inverted index creation and access. To support efficient 

search and interactive analysis, we need appropriate searching 

strategies that can make good use of the inverted index. We have 

designed and tested the following three different searching 

strategies for full-text search: 

(1) Parallel scan search (PSS). This strategy does not use index 

at all and is included so we can evaluate the benefits of our new 

work. To search for a given term, it starts a MapReduce program 

to scan CW09DataTable with multiple mappers. Each mapper 

scans one region of the table, and tries to find the given term in 

the "content" column of each row. If a match is found, the row 

key (i.e., document ID) will be written to output. 

(2) Sequential index search (SIS). To search for a given term, 

this strategy first accesses CW09FreqTable with the term as the 

row key, and then for each document ID recorded in the row, it 

sequentially accesses CW09DataTable to get the content of the 

document, and finally writes the document ID to output. 

 (3) Parallel index search (PIS). To search for a given term, this 

strategy also first accesses CW09FreqTable with the term as the 

row key, and gets all the document IDs recorded in the row. It 

then splits these document IDs into multiple subsets, and starts a 

MapReduce program to get the content of all these documents. 

Each mapper in the program will take one subset of document IDs 

as input, then fetch the content for each ID from the 

CW09DataTable, and finally write these IDs to output. 

It should be noted that all these searching strategies fetch the 

content data of related documents, although they are not written 

into output. So the following tests measure their performances for 

getting the full document data, instead of just the document IDs. 

Taking the document count distribution in Figure 11 into account, 

we test the performance of all these strategies for searching 6 

terms with different document counts. Table 1 presents the 

information about the terms, and Table 2 records the results for 

these tests. Green cells in Table 2 mark the fastest strategy for 

searching each term. 

Table 1. Terms used in searching performance tests 



 

 

term document 

count 

document count / total number of 

documents 

all 30237276 65.31% 

copyrights 4022026 9.98% 

continental 435901 1.08% 

youthful 64409 0.16% 

pairwise 6011 0.01% 

institutional 90 < 0.01% 

 

Table 2. Performance comparison for 3 searching strategies 

term PSS search 

time (s) 

SIS search 

time (s) 

PIS search 

time (s) 

longest / 

shortest 

all 2335 25208 904 28 

copyrights 2365 3579 155 23 

continental 2394 961 208 12 

youthful 2384 282 173 14 

pairwise 2427 32 50 76 

institutional 2413 3 31 804 

We have the following observations from Table 2 for each of the 

three methods introduced above: 

(1) Sequential index search is especially efficient for searching 

infrequent terms. For terms appearing in a large number of 

documents, it quickly becomes impractical because of the long 

time spent on sequentially getting documents' content data. 

(2) While parallel scan search reads document data by scanning, 

parallel index search reads document data by random access. 

Although scanning is much faster than random access in HBase, 

the performance of parallel scan search is still not comparable to 

parallel index search, mainly due to its intensive computation for 

matching the target term with the document data. 

(3) Even for searching the most frequent term "all" in the whole 

data set, parallel index search can complete in about 15 minutes. 

This proves IndexedHBase to be a good fit for researchers' 

requirement for interactive analysis. 

These observations suggest that by wisely choosing the 

appropriate searching strategy, IndexedHBase can save searching 

time by orders of magnitude as seen in ratio of SIS and PIS (using 

the inverted index) to PSS (that is the older technology), and thus 

support interactive analysis very well. Furthermore, to make the 

choice about searching strategies in practice, multiple factors 

should be considered, including terms' document count 

distribution, random access speed of HBase, number of mappers 

to use in parallel scan search and parallel index search, etc. 

5. EXPERIMENTS WITH LC-IR 

SYNONYM MINING ANALYSIS 

5.1 LC-IR Synonym Mining Analysis 
Performance results in section 4.3 and 4.5 show that 

IndexedHBase is efficient for real-time updates and interactive 

analysis. Using the local context–information retrieval (LC-IR) 

synonym mining analysis [] as an example application, this 

section demonstrates the capability and efficiency of 

IndexedHBase in large scale batch analysis over text and index 

data. LC-IR is an algorithm for mining synonyms from large data 

sets. It discovers synonyms based on analysis of words' co-

appearances in documents, and computes similarity of words 

using the formula in Figure 18: 

 

Figure 18. Similarity calculation in LC-IR synonym mining 

analysis. 

In this formula, Hits("w1 w2") is a function that returns the 

frequency of word combination "w1 w2", which is the number of 

times w1 appears exactly before w2 in all documents. Hits("w1") 

is a function that returns the frequency of word "w1" in all 

documents. Obviously, these kinds of information can be 

generated by scanning CW09DataTable and accessing 

CW09FreqTable. 

5.2 A Simple LCIR Synonym Mining 

Algorithm 
Based on the similarity formula in Figure 11, it is straightforward 

to come up with a simple algorithm for mining synonyms from 

the ClueWeb09 Category B data set. This algorithm consists of 

the following steps: 

(1) Word pair frequency counting step. Scan CW09DataTable 

with a MapReduce program, and generate a “pair count” table for 

all word pairs in the documents. Here a "word pair" means two 

adjacent words in any document. 

(2) Synonym scoring step. Scan the “pair count” table with a 

MapReduce program, and calculate similarities of word pairs. 

Single word hits are calculated by first looking up each single 

word in CW09FreqTable, and then adding up its frequency in 

each document it appears. 

(3) Synonym filtering step. Filter the word pairs with a similarity 

value above a threshold, and output these. This step is actually 

carried out on-the-fly by the MapReduce program in step (2). 

5.3 An Optimized LCIR Synonym Mining 

Algorithm 
The performance of the simple algorithm of Section 5.2, turns out 

poor, mainly because step (1) generates a huge number of word 

pairs, which leads to a huge number of random accesses to 

CW09FreqTable; moreover, since a single word may appear in 

many word pairs, there is a lot of repeated calculation for the hits 

of single words in step (2). 

To improve this algorithm, we observe from the formula above 

that similarity of (w1, w2) is non zero only if both Hits("w1 w2") 

and Hits("w2 w1") are non zero. Since most word pairs appear 

only in one order in a given document, we can reduce the number 

of word pairs to be checked in step (2) by only generating pairs 

that appear in both order in step (1). Based on this principle, we 

applied the following optimizations to the simple algorithm: 

Firstly, in step (1), local combiners and global reducers were 

added to filter the word pairs, so that a pair (w1, w2) is generated 

only if Hits("w1 w2") > 0 and Hits("w2 w1") > 0. 

Secondly, before step (2) is executed, a word count table is 

generated to only record the total hits of each word in the data set. 

The total hits information is intensively used in step (2), and 

addition of this table not only makes access to such information 

faster, but also eliminates the unnecessary total hits recalculation 

in the simple algorithm. Furthermore, since a large portion of 

words (40% - 50%) appear only once in all documents, we choose 



 

 

not to store these words in the word count table. Therefore, if we 

cannot find a word in this table, we know its frequency is 1. At the 

same time, we apply a bloom filter to the word count table to 

efficiently identify words that are not recorded in the table. 

Finally, in the synonym scoring step, a memory buffer is added 

for storing word total hits information, so that repeated access to 

the frequency of the same word can be completed in local 

memory. 

Figure 19 and Figure 20 illustrate the performance comparison 

between the naive algorithm and the optimized algorithm on two 

sample data sets. It is clear that the optimizations improved the 

performance of both step (1) and step (2). Moreover, the 

improvement is more significant for larger data sets. The number 

for the synonym scoring step before optimizations in the 408454 

data set is not available because it ran for more than 11 hours, 

which caused our job to be killed because of wall time limit. 

 

Figure 19. Synonym mining performance comparison for 

sample data set with 14641 documents. 

 

Figure 20. Synonym mining performance comparison for 

sample data set with 408454 documents. 

With the optimized algorithm, we were able to efficiently 

complete the LC-IR synonym mining analysis over the whole data 

set. In a configuration with 48 data nodes, step (1) finished in 4 

hours and 42 minutes, and step (2) finished in 1 hour and 42 

minutes. Setting similarity threshold to 0.1, we were able to find 

many unusual synonyms that do not even appear in traditional 

vocabulary. Table 3 shows some example synonyms from our 

results. In summary, our synonym mining experiments 

demonstrate that with the right storage and access solution, 

inverted index data can be useful for not only search, but also 

large scale data intensive analysis. 

Table 3. Example synonyms mined 

synonyms synonym 

score 

meaning 

ablepharie, 

ablephary 

0.17 German and English words 

for the same eye disease 

AbsoftProFortran, 

PGIFortran 

0.11 two fortran compilers 

abzuyian, bzypian 0.5 two dialects of the 

Abkhazian language 

acamposate, 

acomposate 

0.14 two drugs for curing 

alcoholism 

accessLinkId, 

idAccessLink 

0.13 variable names meaning the 

same thing 

6. RELATED TECHNOLOGIES 
Existing technologies similar or related to our project fall into 

three categories: search oriented systems, analysis oriented 

systems, and hybrid systems that support both search and data 

analysis to a certain degree. Table 4 presents a brief comparison 

between many of these systems and IndexedHBase on some major 

features. Due to space limit, we use the acronym "PBC" to 

represent "possible but complicated". The following subsections 

will the differences in detail. 

Table 4. A brief comparison between related technologies and 

IndexedHBase 

 Type System 

inverted 

index 

storage  

MapReduce 

over text 

data 

MapReduce 

over index 

data 

Search 

Oriented  

Solr File No No 

Elastic 

Search 
File No No 

Katta File No No 

HIndex File Yes PBC 

Ivory File No PBC 

Analysis 

Oriented 

Pig N/A Yes N/A 

Hive N/A Yes N/A 

Hybrid 

MongoDB File Yes No 

Solandra Table Yes PBC 

Indexed 

HBase 
Table Yes Yes 

(PBC: possible but complicated) 

6.1 Search Oriented Systems 

6.1.1 Lucene, Solr, ElasticSearch, and Katta 
Apache Lucene [] is a high-performance text search engine library 

written in Java. It can be used to build full-text indices for large 

sets of documents. The indices store information on terms 

appearing within documents, including the positions of terms in 

documents, the degree of relevance between documents and terms, 

etc. Lucene supports various features such as incremental 

indexing, document scoring, and multi-index search with merged 

results. The Lucene library is employed as a core component in 

many commercial document storing and searching systems, 

including Solr, Katta, ElasticSearch, etc. 

Solr [] is a widely used enterprise level Lucene index system. 

Besides the functionality provided by Lucene, Solr offers an 



 

 

extended set of features, including query language extension, 

various document formats such as JSON and XML, etc. It also 

supports distributed indexing by its SolrCloud technique. With 

SolrCloud, the index data are split into shards and hosted on 

different servers in a cluster. Requests are distributed among shard 

servers, and shards can be replicated to achieve high availability. 

Katta [] is an open-source distributed search system that supports 

two types of indices: Lucene indices and Hadoop mapfiles. A 

Katta deployment contains a master server and a set of content 

servers. The index data are also split into shards and stored on 

content servers, while the master server manages nodes and shard 

assignment. 

ElasticSearch [] is another open-source distributed Lucene index 

system. It provides a RESTful service interface, and uses a JSON 

document format. In a distributed ElasticSearch deployment, the 

index data are also cut into shards and assigned to different data 

nodes. Furthermore, there is not a node in a master role; all nodes 

are equal data nodes and each node can accept a request from a 

client, find the right data node to process the request, and finally 

forward the results back to the client. 

IndexedHBase differs from SolrCloud, Katta, and ElasticSearch in 

two respects. Firstly, these systems all manage index shards with 

files and thus do not have a natural integration with HBase. While 

each of these systems has its own architecture and data 

management mechanisms, IndexedHBase leverages the 

distributed architecture of HBase to achieve load balance, high 

availability and scalability, and concentrates on choosing the right 

index table designs for excellent searching performance. 

Secondly, these systems are oriented towards document storage 

and search, but not designed for completing large scale data 

analysis. In comparison, IndexedHBase not only works for 

efficient search of document data, but also supports large scale 

parallel analysis over both text and index data based on the 

MapReduce framework of Hadoop. 

6.1.2 HIndex 
HIndex [] is also a project that tries to leverage HBase to build 

distributed inverted index. While the general concept of HIndex is 

similar to IndexedHBase, it differs in the following major aspects: 

Firstly, while IndexedHBase uses HBase as an underlying storage 

layer and stores index data directly in HBase tables, HIndex 

modifies the implementation of HBase and maintains inverted 

index directly with a modified version of HBase region server. 

This introduces more complexity in terms of system consistency 

and fault tolerance. 

Secondly, document data updates and index data updates are 

logically coupled in HIndex. Each region server maintains index 

data for a certain range of document IDs, and whenever a 

document is inserted, it is indexed by the corresponding region 

server. Therefore, HIndex is suitable for real-time document 

insertion and updates, but it is hard to build indices in batches for 

document data that already exist in HBase tables. Besides, HIndex 

partitions index data by document IDs, while index data in 

IndexedHBase are partitioned by terms, since the index tables are 

using terms as row keys. 

Finally, HIndex builds inverted index using the Lucene library, 

and stores index data as files in Hadoop Distributed File System 

(HDFS). Therefore, it is also possible to process index data with 

Hadoop MapReduce in HIndex, but a certain amount of 

preprocessing and proper input format implementation are 

necessary. On the other hand, doing parallel analysis over index 

data with MapReduce is straightforward in IndexedHBase, since 

index data are directly stored in HBase tables. 

6.1.3 Ivory 
Ivory [] is an information retrieval system developed by Lin's 

group at University of Maryland. Ivory uses HDFS to store 

document and index data, and integrates an information retrieval 

layer by running "Retrieval Broker" and "Partition Servers" 

directly as MapReduce jobs on Hadoop. Ivory also uses Hadoop 

MapReduce to build inverted indices, but it differs from 

IndexedHBase in two major aspects. Firstly, Ivory stores both 

document and index data as files on HDFS, and completes index 

building in batches with MapReduce jobs. It does not consider 

real-time document insertion and indexing as a requirement. 

Secondly, Ivory focuses on information retrieval, and does not 

take data analysis as a major concern. Doing parallel analysis over 

document and index data with MapReduce is possible in Ivory, 

but not as straightforward and flexible as in IndexedHBase, since 

it takes some extra effort and configuration to deal with its 

specific file formats. 

6.2 Analysis Oriented Systems 

6.2.1 Pig and Hive 
Pig [] is a platform for analyzing large data sets that consists of a 

high-level language for expressing data analysis programs, and an 

infrastructure for evaluating these programs. With its "Pig Latin" 

language, users can specify a sequence of data operations such as 

merging data sets, filtering them, and applying functions to 

records or groups of records. This provides ease of programming 

and also provides optimization opportunities. 

Hive [] is a data warehouse system for Hadoop that facilitates 

easy data summarization, ad-hoc queries, and the analysis of large 

datasets stored in Hadoop compatible file systems. Hive also 

provides a language, HiveQL, for data operations, which closely 

resembles SQL. 

Pig and Hive are mainly designed for batched data analysis on 

large datasets. Pig Latin and HiveQL both have operators that 

complete searches, but searching is mainly done by scanning the 

dataset with a MapReduce program and selecting the data of 

interests. Hive started to support indexing in its later versions, but 

not including inverted indices for full-text search. In comparison, 

IndexedHBase not only supports batched analysis via 

MapReduce, but also provides an interactive way of searching 

full-text data in real-time based on use of inverted indices. 

6.3 Hybrid Systems 

6.3.1 MongoDB 
MongoDB [] is an open-source document-oriented NoSQL 

database. It stores structured data in BSON format, a file format 

similar to JSON with dynamic schemas, and can also be used as a 

file system. MongoDB supports index on all kinds of document 

fields, including inverted index on full-text field values, and can 

evaluate multiple types queries, such as range queries and regular 

expression queries. MongoDB implements its own data 

replication and sharding mechanisms to achieve high data 

availability, scalability, and load balancing. MongoDB also 

supports MapReduce for batch processing and aggregation 

operations, with map and reduce functions written in JavaScript. 

Compared to IndexedHBase, MongoDB is similar in that it also 

works as a NoSQL database, and supports inverted index and 

search for full text data. The difference is that MongoDB stores 



 

 

inverted index data in as files instead of tables, and does not 

support batch processing over the index data with MapReduce 

jobs. MapReduce in MongoDB aims mainly at aggregation 

operations, and is not as expressive and rich as Hadoop 

MapReduce. For example, there is no way for a map function 

written in JavaScript to directly access the index data in 

MongoDB, which is necessary in our LC-IR synonym mining 

analysis. 

6.3.2 Cassandra and Solandra 
Cassandra [] is another open-source NoSQL database system 

modeled after BigTable. Differently from HBase, Cassandra is 

built on a peer-to-peer architecture with no master nodes, and 

manages table data storage by itself, instead of relying on an 

underlying distributed file system.  

Solandra [] is a Cassandra-based inverted index system for 

supporting real-time searches. The implementation of Solandra is 

an integration of Solr and Cassandra. It inherits the 

IndexSearcher, IndexReader, and IndexWriter of Solr, and uses 

Cassandra as the storage backend. Although Solandra is similar to 

IndexedHBase in that it also stores index data in tables (in 

Cassandra), it is different in the following ways: 

Firstly, the table schemas used by Solandra are different from 

IndexedHBase. Similar to Solr, Solandra splits documents into 

different shards, and the row key of the index table in Solandra is 

a combination of shard ID, field name, and term value. Therefore, 

the index data storage is partitioned not only by term, but also by 

shard ID and field name. Besides, Solandra stores term frequency 

information and term position vectors in the same table. This may 

lead to unnecessary data transmission in cases where position 

vectors are not needed for completing searches. 

Secondly, since HBase supports efficient range scan of rows, it is 

easy to finish range scan of terms in IndexedHBase. In contrast, 

range scan of rows is not supported very well in Cassandra. As a 

result, Solandra has to rely on an extra term list table to complete 

range scan of terms, which is not as efficient as in HBase. 

Finally, Cassandra started to integrate with Hadoop MapReduce 

in its later versions, but the implementation is still not mature 

enough and the related configuration is not as straightforward as 

in HBase. Therefore, doing parallel analysis over document and 

index data in Solandra is not as convenient and efficient as in 

IndexedHBase. 

7. CONCLUSIONS AND FUTURE WORK 
The development of data intensive problems in recent years has 

brought new requirements and challenges from researchers to 

storage and computing infrastructures, including incremental data 

updates and interactive data analysis. In order to satisfy these 

emerging requirements, it is necessary to add proper indexing 

mechanisms and searching strategies to existing data intensive 

storage solutions. Moreover, after the addition of these new 

capabilities, the storage system should still be able to support 

large scale analysis over both original and index data. 

This paper presents our work on IndexedHBase, a scalable, fault-

tolerant, and indexed NoSQL table storage system, that addresses 

these research challenges. In order to support efficient search and 

interactive analysis, IndexedHBase builds inverted indices for 

HBase table data, and uses a combination of multiple searching 

strategies to accelerate the searching process. Moreover, by 

storing inverted indices as HBase tables, IndexedHBase achieves 

several advantages, including reliable and scalable index data 

storage, efficient index building mechanisms for both batch 

loading and incremental updating, as well as support for large 

scale parallel analysis over both original and index data. 

Performance evaluations show that IndexedHBase is efficient and 

scalable in batch index building, real-time data updating and real- 

indexing, and random index data access. Furthermore, by 

choosing the appropriate optimized searching strategies, 

IndexedHBase can improve the searching performance by orders 

of magnitude as shown in table 2. Our experiments with the LC-

IR synonym mining analysis demonstrate that inverted index data 

are not only useful for boosting search, but also valuable for 

efficient large scale data analysis applications. 

There are several directions that we can continue to explore in our 

future work: 

Firstly, our current experiments demonstrate that IndexedHBase is 

efficient at the scale of 100 nodes. Based on the distributed 

architecture of HBase and Hadoop, we expect IndexedHBase to 

scale to a much larger size. Therefore, we plan to carry out 

experiments at the level of thousands of nodes in the future to 

further verify the scalability of IndexedHBase. 

Secondly, our results in section 4.4 suggest that in order to choose 

the right searching strategy, multiple factors about the searched 

term and system environment should be considered. As part of our 

future work, we will try to build a searching mechanism that can 

take all these factors into account and make dynamic choices of 

optimal search strategies to get the best searching performance. 

Finally, our current searching strategies can only handle queries as 

simple combinations of terms. So another major concern in our 

future work is to develop a distributed search engine that can 

handle more complicated queries by making and executing 

distributed query evaluation plans. 
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