

Design and Implementation of
a collaboration Web-services system

Wenjun Wu1 Geoffrey Fox1 Hasan Bulut1 Ahmet Uyar2 Harun Altay1
1Community Grid Computing Laboratory, Indiana University

Indiana Univ Research Park, 501 North Morton Street, Suite 222, Bloomington, IN47404
2Department of Electrical Engineering and Computer Science, Syracuse University

Abstract
Conference control has been studied for years but most researches focus on homogenous collaboration.
There is no conference control framework for integration of multiple collaboration systems such as H.323,
SIP and AccessGrid. In this paper we present a web-services based scalable conference control framework
for such a heterogeneous collaboration system. Based on this framework, we implemented a prototype
system to verify and refine our framework. This system can support various conferencing endpoints and
communities.
Keywords

Web-Services, Collaboration, Global-MMCS, XGSP, NaradaBrokering

1. Introduction
Collaboration and videoconferencing systems have become a very important application in the Internet.
There are various solutions to such multimedia communication applications, among which H.323 [1], SIP
[2], and Access Grid [3] are well-known. It will bring substantial benefits to Internet users if we can build
an integrated collaboration environment, which combines these systems into a single easy-to-use, intuitive
environment. However, at present they have features that sometimes can be compared but often they make
implicit architecture and implementation assumptions that hamper interoperability and functionality.
Therefore it is very important to create a more general framework to cover the wide range of collaboration
solutions and enable users from different communities to collaborate. In this paper, we present such a
common, interoperable framework based on Web services technology for creating and controlling
multipoint video & audio collaborations. And we also introduce the implementation of the collaboration
system based on this framework.

The paper is organized in the following way: Section 2 introduces related work and our research
issues. Section 3 describes the XGSP (XML based General Session Protocol) conference control
framework. Section 4 presents the implementation of Global Multimedia Collaboration System (Global
MMCS). And we give the conclusion and future work in section 5.

2. Related Work and Problem Statement

The multimedia collaboration framework has been studied over years. The well-known solutions have
H.323, SIP and IETF MMUSIC [4]. The IETF's Multi-Party Multimedia (MMUSIC) working group
proposed its own solution SCCP (Simple Conference Control Protocol) [5]. However, its main target was
lightweight conference management for multicast instead of tightly controlled models. Because multicast
can’t be deployed widely in the Internet in near future, in the year 2000 MMUSIC WG gave up and
removed conference control from the WG charter. The project Access Grid started from the MBONE tools:
VIC and RAT, and is also trying to define its own conference control framework rather than SCCP.

H.323 is a communication standard produced by the ITU, initiated in late 1996, and aimed at the
emerging area of multimedia communication over LANs. It is an outgrowth of the traditional H.320
technology but optimized instead for the Internet. H.323 is widely supported by many commercial vendors
and used throughout the world in commercial and educational markets.

H.323 is defined as an umbrella standard specifying the components to be used within an H.323-based
environment. It provides conference management functionality for audio/video conferences using the call
signaling functionality of H.225 [6], H.245 [7]. These protocols provide call set-up and call transfer of real-
time connections to support small-scale multipoint conferences. The protocol H.243 [8] concerns the

system operation for a conference call between three or more audiovisual terminals. It defines some
commands between the MCU and H.320 terminals to implement audio mixing, video switch and cascading
MCU. H.243 commands have been included in H.245.

For the data part of a conference, the conference management of the T.120 recommendation [9] is
used. This standard contains a series of communication and application protocols and services that provide
support for real-time, multi-point data communications. The multi-point facilities are important building
blocks for a whole new range of collaborative applications including desktop data conferencing, multi-user
applications, and multi-player gaming.

The Session Initiation Protocol (SIP) defines how to establish, maintain and terminate Internet
sessions including multimedia conferences. Initially SIP was designed to solve problems for IP telephony.
To this end, SIP provides basic functions including: user location resolution, capability negotiation, and call
management. All the capabilities are basically equivalent to the service H.225 and H.245 in H.323 protocol.
The major difference is that SIP was designed in a text format and took request-response protocol style like
HTTP. But H.225 and H.245 were defined in a binary format and kept a style of OSI (Open System
Interconnection). Therefore SIP has some advantages of interaction with web protocols like HTTP in VoIP
industry.

More importantly, SIP doesn’t define the conference control procedure like H.243 and T.120.
Additional conference control mechanisms have to be implemented on the base of SIP to support the A/V
and data collaboration. Recently SIP research group begun to develop their framework and produced a few
drafts [9,10]. But SIP work is still in the beginning phase and has not been widely accepted.

SIP + SDPH.245
Control

Signalling

H.225
Control

Signalling

H.243
A/V

Conference
Control

T.122 / T.125
Multipoint Comm

Service

T.124
Generic Conference

Control

T.127
Multipoint binary

file TransferT.126
Whiteboard App

Data Collaboration A/V Collaboration

H.323 Conference Control
Frame

SIP Conference Control
Frame

 T.120

Figure 1 H.323, T.120 and SIP protocol stack

Figure 1 compares the H.323, T.120 and SIP protocol stacks. T.120 defines very complete framework for
general data conferencing. At the bottom of the T.120 protocol stack, T.122 [11] defines the multi-point
services available to the developer, while T.125 [12] specifies the data transmission protocol. Together they
form MCS (Multipoint Communication Service) which become an “overlay” network for any multi-point
application.

Based on this “overlay” multipoint communication network, T.124 [13] (Generic Conference Control)
provides a comprehensive set of facilities for establishing and managing the multi-point conference. It
maintains the state information about the nodes and applications that are in a conference. Using
mechanisms in T.124, applications create conferences, join conferences, and invite others to conferences.
T.126 [14] and T.127 [15] are whiteboard application and multipoint file transfer application based on
T.124.

For the tightly coupled conferencing, T.120 provides a good general architecture which clearly
defines the functions and services of each layer. And it should be able to support many collaboration
application including audio and video. However in H.323, T.120 is completely independent of H.225 and
H.245. In fact, A/V and data collaborations should be integrated in the same framework so that the
architecture can be easily implemented and maintained.

To build more advanced and integrated collaboration systems, neither H.323/T.120 nor SIP is
sufficient:

(1) SIP has very limited supported for conference control.
(2) In H.323 framework, A/V collaboration and T.120 are not well integrated. Moreover, the A/V

communication services and T.122 overlay networks don’t have very good scalability.
(3) H.323 and T.120 are designed in a relative complicated OSI model. It is not easy to understand

and develop in their APIs.
(4) All these frameworks only deal with homogenous video conferencing and can’t connect to other

collaboration systems.
Recently, many new technologies in the Internet such as XML, SOAP, Web-Service, Publish

/Subscribe messaging as well as peer-to-peer computing have emerged and started to change the Internet
applications. These new technologies enable the new architecture for collaboration systems:

(1) A unified, scalable, robust “overlay” network is needed to support A/V and data group
communication over heterogeneous networking environments. Centralized conferencing systems usually
depend upon a single conference server for group communication purpose. Distributed conferencing
systems take IP multicast. For example Access Grid uses Internet2 multicast for audio/video transmission.
Both of the services have some limitations. Centralized conferencing systems don’t have good scalability.
And it is not easy to deploy distributed conferencing systems on current Internet because IP multicast has
not become ubiquitously available. Therefore such an overlay will fundamentally solve the issue of
scalability and deployment under the Internet environment.

(2) A common A/V signaling protocol has to be designed to support interactions between different
A/V collaboration endpoints. For example, in order to get the H.323, SIP and MBONE endpoints to work
in the same A/V session, we have to translate their signaling procedures into our common procedure and
build the collaboration session. Just like the text messages in SIP, XML should be used to describe the
common signaling protocol because it makes the protocol easier to be understood and to interact with other
Web based components.

(3) A core conference control mechanism is required for establishing and managing the multi-point
conference. The service of this part is quite like T.124 (Generic Conference Control). However this
mechanism will provide more flexible facilities to describe application sessions and entities. And it can be
designed in a more scalable approach based on the powerful publish/subscribe messaging services. All the
description information for the applications and sessions can be kept in XML format rather than binary
format, which will lead to easier development. Furthermore most control messages can be transferred
through messaging middleware rather than central servers and the most session information can be
distributed in all the participating nodes.

(4) Finally, we’d like to use web-services to integrate collaboration communities in different
technologies. Various collaboration systems including Access Grid, H.323 and SIP should be regarded as
Web-services components and provide Web-services interface of their conference control protocols to the
core conference control components. They can invoke these services to build an integrated community-to-
community conference across the communities.

There have been some projects like VRVS [16] that can also provide some kind of integration of
different A/V endpoints. But VRVS is not an open project having few documents for their architecture and
conference control framework. From the introduction in its web site, we can make some comments: VRVS
builds its collaboration service on top of pure-software reflector infrastructure which is a kind of software
multicast. It is capable of supporting MBONE tools, H.323 terminal as well as QuickTime player. It also
supports some data sharing collaborations, like shared web browsing and shared desktop (VNC). However
it doesn’t seem to have floor control mechanism, support community-to-community collaboration as well
as many important data collaborations.

The following table gives a comparison between XGSP and other frameworks. Although the SIP and
Access Grid are trying to add the conference control mechanism, their frameworks haven’t been well
defined. So we make this comparison according to the current capabilities of their systems.

 H.323, T.120 SIP IETF
Access Grid VRVS XGSP

Conference
Management supported

No

supported supported supported

Overlay
Network

Environment

Internet / ISDN
Firewall
transversal
under the
support of VPN

No

High
performance
with
multicast
support ,
No firewall
tunneling

Reflector
Infrastructure
Software
Multicast

Publish/Subscribe
with
Firewall
transversal
(VPN optional)

Data
Collaboration

Limited: T.120
whiteboard, File

FTP
No

Limited to
(PowerPoint,

Chat)

Limited to
(Shared
browsing and
VNC)

allows full
integration of all
tools

Floor

Control
Mechanism

H.243
T.120

No
(Under

development)
No No

Chairman based
Flexible role

setting
Scalability Not good Not good Good Good Good

Support
heterogeneous

clients
No No No H.323,

MBONE
H.323, SIP,
MBONE

Community-
To-

Community
Collaboration

No No No No Yes

Table 1 Comparison of XGSP with Competitive Framework

3. XGSP Design
3.1 XGSP Architecture
In our XGSP framework, we use the messaging middleware for the “overlay” over heterogeneous networks
to support publish/subscribe communications. NaradaBrokering [17] from the Community Grid Labs is
adapted as a general event brokering middleware, which supports publish-subscribe messaging models with
a dynamic collection of brokers and provide services for TCP, UDP, Multicast, SSL and raw RTP clients.
Also NaradaBrokering provides the capability of the communication through firewalls and proxies. It can
operate either in a client-server mode like JMS or in a completely distributed JXTA-like peer-to-peer mode.
JMS API is very good for developing scalable collaboration applications. The publish/subscribe interaction
paradigm make it possible to build a peer-to-peer and loosely coupled distributed system. And
publish/subscribe topics, which represent keywords for publisher and subscriber, can be used to describe
hierarchy and complicated collaboration groups. Built upon the service, one of the important issues for
XGSP is the organization of the topic name space for conference control purpose. It will be introduced in
Sec 3.3.

Figure 2 shows the important components in XGSP framework:

Conference Manager

Narada
Brokering

User 5

User 3User 2

Node
Manager

Application
Instance 0

Application
Instance 1

User 1

App Sessions

Conference
Calendar

Application
Registry

User
Accounts

Figure 2 XGSP Conference Control Architecture

The conference manager is the server keeping the important information for all the conferences. Through
the manager, users can create a new conference or terminate an old one. The meta-data repositories in the
conference manager includes: a conference description set, application registry set as well as user accounts.
The conference description set contains the registries of all the scheduled conferences. Each conference
registry includes the fields: Conference ID, Conference Name, Conference Mode, Conference Time, and
Available Application Session Templates. The application registry set has all the registries of the
collaboration application such as A/V, chat and whiteboard. An application registry usually contains the
entries like application identification, role systems definition as well as specific attributes.

A node manager is the user interface for the XGSP conference management service in each user. An
application instance refers to a client of the collaboration applications. Because a node manager has the
factories for all kinds of applications, it can create new application instances, and invoke start, stop, and
set-role methods in them.

The XGSP conference control includes three services: conference management, application session
management and floor control. The conference management supports user sign-in, user
create/terminate/join/leave/invite-into XGSP conferences. The application session management provides
users with the service for creating/terminating application sessions. And the floor control manages the
access to shared collaboration resources in different application sessions. Through Section 3.2 to 3.4, we
discuss them in detail. And an example is presented in Appendix A.

3.2 XGSP Conference Management
These services have the methods of Create / Modify / Terminate Conference, allowing users to make
meeting schedules and look up active meetings.

(1) Conference Schedule
The conference manager offers a meeting calendar object listing all the meetings requested by users. It

can be easily implemented in web pages. Users can make meeting reservations via their browsers or emails.
The conference manager can approve or deny the requests of the users according to the capability of
conference servers.

Each conference schedule record keeps the description of the conference, including the starting and
end time. The conference manager will activate the conference at the starting time and de-activate it at the
ending time. Some persistent conferences which have permanent schedule records have to be supported for
the purpose of testing and management.

A user can have two ways to know how many meetings have been scheduled and active. He can either
search the web conference calendar or send a query message to the conference manager.

(2) Users in a XGSP Conference
After the XGSP conference is activated, XGSP users can join this conference by starting their node
managers. XGSP users can be divided into three categories: administrator, conference chairman and normal
users. The administrator user is a very special user which can be regarded as a super user in the system. A
chairman user usually has the power of creating application sessions and setting the roles of users in the
conference.

(3) XGSP Conference membership maintenance
The session membership containing a list of the participants is shared by all the participants.

Whenever there is some change in the membership, for example a new member joins in the session, the
membership has to be updated and distributed to all the participants.

Users can send Join/Leave/InviteIntoConference messages to change the conference membership.
Whenever there is a change in the membership, a membership event is generated and broadcasted to all the
participants and the conference manager. Late-joining users have to send Request Membership messages to
the manager server to get the whole view of the membership. Each user sends heart-beat messages during
some period to all the peers in the conference. In this way, we implement a soft-state mechanism for the
membership maintenance.

Each conference has a particular NaradaBroker topic for the control purpose. The topic name takes the
form of “/xgsp/conferenceID/ctrl”, in which conferenceID is the string identification for the conference.
3.3 XGSP Application Session Management
Application sessions refer to the groups of the collaboration application. Note that various collaboration
applications may have quite different architectures even based on the same NaradaBroker messaging
service. A shared-input port collaboration model is the peer-to-peer communication style without any
centralized components, whereas a share-output port model needs some servers [18]. The XGSP

application session management doesn’t make any assumption about how the applications are organized,
but to support the core services for all kinds of applications.

(1) Different Application sessions in XGSP
There are three types of application sessions: public application sessions and private application

session. A public session is open to all the users in the conference. All the participants in the conference
can join the public application sessions. A private session is not open to all the users in the conference. And
only invited users can join.

Default public application sessions refer to the sessions pre-defined in the conference description. For
example, each XGSP conference usually has a default public A/V group and a public chat group. A non-
default public application session has to be created by the conference chairman. The conference chairman
can set the roles of the users in this public application session. He will terminate the application session
when the session is over.

A private application session can be created by any member in the conference for private purpose. A
user can join the private session only after he receives and accepts the invitation from the session initiator.
The initiator user who is the conference chairman in the private session has the power of setting roles and
closing the session.

(2) Topic name schema for application sessions
Each application session should have its own topic name space inside NaradaBrokering. We can

define the naming schema: /xgsp/conferenceID/Application-Session-ID. The conferenceID field is
generated by the conference manager and determined when the conference is activated. The Application-
Session-ID field is generated when the application session is created. This field can have three kinds of
forms: the default public session can use the application type identification like av, chat, whiteboard. The
public application sessions take the format of < application type, sequence number >. The sequence number
represents the last number of the application sessions. The private application sessions can be < application
type, initiator-ID, sequence number>. In the following, we give a few examples: suppose the conference
named ourtestroom is created. And it has two default application sessions with the topic names:
/xgsp/ourtestroom/av and /xgsp/ourtestroom/chat. If the chairman in the conference creates two whiteboard
sessions, their topic names should be: /xgsp/ourtestroom/whiteboard-0, /xgsp/ourtestroom/whiteboard-1.
For a private whiteboard session initiated by the user with the user ID: “testuser”, its topic name should be
/xgsp/ourtestroom/whiteboard-testuser-0.

(3) Procedures in creating and terminating application sessions
The procedures involve the node managers and the conference managers. Each node manager keeps a

directory of the application sessions. It shows all the public sessions and visible private application sessions
to users.

The node manager of the chairman user in the conference can send a “Create Application Session”
message to all the node managers in the conference. Each node manager adds the application session
information in this message into a local session directory. When the session is over, the chair node manager
will send the message of “Terminate Application Session” to all the node managers. They will close the
application instances which are active in the session and remove the session information from the local
session directories.

Private sessions are created in the similar way like public sessions. Suppose a user A wants to create
a private chat session. His node manager will send a “Create Application Session” message with the private
flag set to all the node managers. Although it is written by each node manager into the local session
directory, it will not be visible to users until the node manager receives an “Invite Into Application
Session” from user A manager.

The conference manager monitors the life-cycles of the sessions. If the session has a session server,
the manager commands the application session servers to work for the management of the session. Section
3.5 presents a detailed description how A/V application sessions are handled.

(4) Join/Leave Application Session
The application session directory is showed in the UI of the node manager. When a user wants to join

this application session, he can select it from the directory. The application factories in the node manager
will create an application instance and start it. During the initialization of the new application instance, the
NaradaBroker topic name and the initial role are passed on to the application instance. It is up to the
application instance to deal with the details of joining the application session.

The private application session is only showed in the UI after the “Invite Into Application Session”
message for this session arrives. If the user accepts the invitation, the node manager will send the reply to
this invitation and create a new application instance.
3.4 XGSP Floor Control

Conference applications often have shared resources such as the right to talk, a pointer or input focus in a
shared application, access to shared lesson or game rooms. Floor control enables applications or users to
gain safe and mutually exclusive or non-exclusive access to the shared object or resource. The policy of
floor control usually highly depends upon the collaboration applications. Therefore it is not the job of
XGSP to define the floor control policy for the applications. However, any conference can be divided into
two modes: moderated and unmoderated. A moderated conference needs a chair to determine some “floors”
for the collaboration applications. To support this general policy for floor control, XGSP takes a role-based
approach and provides a chairman mechanism. Roles define the access right to shared collaboration
resources in a very natural way. For example, in the chess game, we can have a white player, a black player
and many observers.

Each collaborative application defines its role system in a XML registry. A role description includes
the role name and the role capability. The conference manager keeps the database of all these definition
registries. It copies the database to a user node manager when the user joins the conference.

The conference chairman has the right of setting the roles. It can send a “SetApplicationRole”
message to the application instance running in other users. A “SetApplicationRole” message tells the
conference participants which user should be changed to this role. All the application instances have to
parse the message and take appropriate actions.

In a XGSP conference, only one chair should be present. It is important to keep the chairmanship and
deal with the failure of the chair node. The following messages are introduced to implement this:
RequestChair, RleaseChair, GiveChair and ChairAnnouncement. The initial chairman is defined in the
conference description. Other users who want to become a chair, has to send a RequestChair message to the
chair for permission. The chairman will send a “GiveChair” back to the requestors if he agrees to give the
chair to the new one. “Chair Annoucement” is the heat-beat message for the chair user. If the chair node
failed and can’t recover, other users with the role capability of chair election have to vote for a new chair.

3.5 XGSP AV Application Session
XGSP A/V Session supports multiple kinds of clients including H.323, SIP and Access Grid, which use
RTP protocol for their transportation. The NaradaBrokering event overlay provides messaging service to
the A/V components. For the transportation of RTP packets over NaradaBroker overlay networks, RTP
packets have to be encapsulated into a special NaradaBroker event named RTP event by RTPLinks
components in border brokers before they can be routed in the overlay network. And the RTP events also
have to be transformed back into normal RTP packets when they leave for their subscribers. Therefore for
every legacy RTP A/V endpoints, one corresponding RTPLink needs to be set up at a broker within broker
network.

In order to get better communication performance in the NaradaBroker overlay, a RTP event uses a
32-bit integer for topics rather than a string keyword. And each RTPLink occupies two NaradaBroker
topics to publish its RTP and RTCP data, which means there are many topics for an A/V collaboration
group. Therefore in XGSP AV application session management, we need a mapping between SSRC
number of each A/V stream and integer topics generated by the NaradaBroker.

To support different A/V application endpoints having their own signaling procedures, XGSP
framework provides a common XML based signaling protocol for them. H.323 (H.225, H.245) and SIP
signaling protocols have to be translated into the XGSP A/V signaling protocol and vice versa.

A XGSP A/V session needs H.323, SIP Gateway Servers and an A/V Session Server to deal with the
control layer problems of the A/V collaboration system. The H.323 and SIP gateway transform H323 and
SIP messages into XGSP signaling messages so that H.323 and SIP A/V endpoints could communicate
with the XGSP A/V session server. The session server implements session management logics including
creating/destroying A/V sessions, allowing endpoints to join/leave session and make audio/video selection,
managing A/V application components like audio mixers, video mixers as well as image grabbers.

Based on such a design of XGSP AV application session, when an AV session is created, the XGSP
conference manager has to ask AV session server to activate the session. And when a user wants to join this
AV session, his node manager will start the A/V application instance and the instance will contact the A/V
session servers to join the session.
3.6 Connecting to other collaboration communities using web services
The above sections describe the core conference control for XGSP communities. In the section, we discuss
about how to build an integrated collaboration system on the scale of community-to-community. Web-
services seems to be the best candidate for this conference control framework since it can run across
various platforms and is easy to be extended and understood. Figure 3 shows the architecture of the XGSP
web-services framework. The overlay networks (or servers) in other communities are connected to the

NaradaBroker messaging overlay. And each community provides the state-aware web-services of
conference control to the XGSP servers.

XGSP Collaboration
Manager Servers

Access
Grid

Serv ices
H.323

Serv ices
SIP

Serv ices

N
ar

ad
aB

ro
ke

r
M

es
sa

gi
ng

Web Service

RTP & Data channels

 RTP & Data Channels

Figure 3 XGSP Web-Services Framework

In this community-to-community collaboration system, users can schedule XGSP conferences not only held
in XGSP servers but also the servers from other technologies communities. Such a XGSP conference is
organized in a hierarchy way: a top-XGSP-conference and multiple sub-XGSP-conferences happened in
local communities. Local collaboration managers work like service factories, which can create a conference
service instance to communicate with the XGSP conference manager through SOAP RPC [19]. Therefore
the components including conference management, application sessions management and floor control can
be implemented in this two-level control structure. The XGSP conference manager controls the top-XGSP-
conference and the local manager instances only control sub-XGSP-conferences.

(1) Service Creation / Termination
The XGSP conference manager keeps the registries of the communities that would like to connect to

the XGSP community. When a user schedules a conference including these communities, the XGSP
conference manager has to invoke “Creation-Conference” requests in the manager factories of the local
communities. If the request is successful, it will result in the creation of a conference manager instance with
the initial lifetime for this conference. When the conference is over, the XGSP conference manager can
invoke “Terminate-Conference” to destroy the local manager instance.

(2) Conference Membership Service
The local manager instances in sub-XGSP-conferences can play as an intermediate node to implement

the distributed membership maintenance. The XGSP conference manager collects the membership report
from the local conference service. And the sub-conference managers collect the local membership reports
from the local users. The XGSP conference manager announces the change of the membership to all the
users and the local managers.

(3) Application Session Creation / Termination
Only public sessions can be supported in XGSP conferences with multiple communities because the

private application sessions are usually not implemented in other collaboration technologies. When a public
application session is created in the XGSP conference, the XGSP conference manager will invoke a
“create-application-session” request to the local managers. The local managers will create the session by
their own mechanisms and try to link their A/V and data channels to the NaradaBroker.

Here we give an example to show how we can create an A/V application session in a multiple-
community conference. When the XGSP A/V application session is activated, the XGSP conference
manager will invoke “create-A/V-session” in all the local managers who use internal mechanisms to
connect their A/V servers to the NaradaBroker. For H.323 and SIP communities, they connect with the
NaradaBroker by dialing in the H.323 and SIP gateway. Since a MBONE community like AccessGrid, has
no signaling procedure, the XGSP servers will launch an AG agent that joins in the multicast A/V groups
and forwards the packets between the top XGSP session and the AG multicast groups.

(4) Floor control Mechanism and Policy
Only the conference chairman has the power to set the roles of the users in both the conference and

sub-conferences. And only the users in the top conference can have chances to become a chairman. When

the conference chairman wants to set the role for a user in sub-conference, the “Set Role” request will be
forwarded to the XGSP conference manager. The manager will invoke “Set Role” service in the local
manager. The local manager has to employ its own way to execute the role changing procedure.

4. Global MMCS Implementation
We have developed a prototype system called Global-MMCS (Global Multimedia Collaboration System) to
verify and refine our XGSP conference control framework. Global-MMCS prototype is built based on the
NaradaBrokering middleware. All the A/V processing components, including the video mixer, audio mixer
as well as the image grabber servers are developed using Java Media Framework [20]. Java Media
Framework (JMF) package, which can capture, playback, stream and transcode multiple media formats,
gives multimedia developers a powerful toolkit to develop scalable, cross-platform technology.

To implement the H.323 gateway and SIP gateway, we use the protocol stacks from the open source
projects, including OpenH323 [21] and NIST-SIP [22] project. The A/V Session Server is built to manage
real-time A/V sessions, receiving messages from gateways and the web server through different control
topics on the NaradaBrokering.

The XGSP web server based on Apache Tomcat provides an easy-to-use web interface for users to
make meeting schedules, join XGSP conferences and for administrators to perform the tasks of the system
management. The XGSP conference manager is implemented as an embedded server in the web container.
It can create/destroy conferences, activate/deactivate A/V application sessions and generate the active
conference directory to all the users. Users should log into Global-MMCS through their web browsers and
select active conferences.

The node manager is implemented in an applet running inside the Global-MMCS portal browser. The
node manager will show up when the user joins the conference. Right now the node manager can report the
membership in the XGSP conference. In addition, it has a few buttons for the available application
endpoints, including: a Unicast JMF, H.323, Real Streaming and chat application portlet. Depending upon
XGSP AV servers, the Unicast JMF portlet can build up their A/V stream list in a videoconference and
allow the user to choose any number of video streams for receiving and rendering. The H323 and Real
Streaming portlets are the wrappers for H.323 terminals and RealPlayer, supporting a single video selection
and rendering in their particular clients. The chat portlet provides the text chat collaboration.

The following figure shows the Global-MMCS web portal and the node manager on the left side. On
the right side, the Unicast JMF and chat portlets are displayed. On the left bottom, it is the Real Streaming
portlet.

Figure 4 Global-MMCS Web Portal and application portlets

5. Conclusion
In this paper, we have described a web-service based framework XGSP for conference control. Under the
XGSP framework, we can integrate many collaboration applications into a single intuitive and easy-use
environment. For the A/V collaboration, XGSP can support various audio/video endpoints including H.323,
SIP and Access Grid. Furthermore XGSP uses web-services to build a community-to-community
collaboration to share the global collaboration resources. The XGSP framework is not designed for
replacing the frameworks of H.323, SIP as well as Access Grid, but for bridging them based on web-
services technology.

In this paper we have presented our prototype collaboration system named Global-MMCS, which
provides services to heterogeneous endpoints. This collaboration system is developed based on our XGSP
collaboration framework and NaradaBrokering messaging middleware. Such an integrated collaboration
environment greatly benefits those users that want to enter Access Grid world via H.323, SIP as well as
streaming clients.

Current Global-MMCS only implemented part functions of the XGSP framework. In the next step, we
will try to add the floor control service, more collaboration applications, and extend the scalability of the
system to 10,000 users.

References
[1] ITU. Recommendation H.323(1999), Packet-base multimedia communications systems.
[2] J. Rosenberg et al. (2002) “SIP: Session Initiation Protocol”, RFC 3261, Internet Engineering Task
Force, http://www.ietf.org/rfc/rfc3261.txt.
[3] Access Grid (2003), http://www.accessgrid.org
[4] Handley, M., Crowcroft, J., Bormann, C. and J. Ott (2002) The Internet Multimedia Conferencing
Architecture, Internet Draft, draft -ietf-mmusic -confarch-03.txt.
[5] Bormann, C., Kutscher, D., Ott, J., and Trossen, D. (2001). Simple conference control protocol service
specification. Internet Draft, Internet Engineering Task Force, Work in progress.
[6] ITU. Recommendation H.225(2000), Calling Signaling Protocols and Media Stream Packetization for
Packet-based Multimedia Communication Systems.
[7] ITU. Recommendation H.245(2000), Control Protocols for Multimedia Communication.
[8] ITU. Recommendation H.243(2000), Terminal for low bit-rate multimedia communication.
[9]Koskelainen P., Schulzrinne H. and Wu X.(2002), A SIP-based Conference Control Framework,
NOSSDAV’02, May 12-14, 2002, Miami Beach, Florida, USA.
[10] Wu, X., Koskelainen P., Schulzrinne H., Chen C (2002). Use SIP and SOAP for conference floor
control.Internet Draft, Internet Engineering Task Force, Feb. 2002. Work in progress.
[11] ITU. Recommendation T.122 (1993), Multipoint Communication Service for audiographics and
audiovisual conferencing service.
[12] ITU. Recommendation T.125 (1994), Multipoint Communication Service, 1994.
[13] ITU. Recommendation T.124 (1995) Generic conference control, 1995.
[14] ITU. Recommendation T.126 (1995), Multipoint still image and annotation protocol.
[15] ITU. Recommendation T.127 (1995), Multipoint binary files transfers protocol.
[16] Virtual Rooms Video Conferencing System (2003), www.vrvs.org
[17] Geoffrey C. Fox and Shrideep Pallickara (2002). “The Narada Event Brokering System: Overview and
Extensions”, proceedings of the 2002 International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA'02)
[18] Geoffrey Fox, Hasan Bulut, Kangseok Kim, etc, (2003). Collaborative Web Services and Peer-to-Peer
Grids , Keynote speech 2003 Collaborative Technologies Symposium (CTS'03).
[19] Steve Graham, Simeon Simeonov (2002) etc, Building Web Services with Java, ISBN0-672-32181-5,
Sams publishing.
[20] Sun Microsystems, Java Media Framework 2.1, (2001),
http://java.sun.com/products/javamedia/jmf/2.1.1/index.html.
[21] OpenH323 Project (2001) , http://www.openh323.org
[22] NIST SIP (2001), http://snad.ncsl.nist.gov/proj/iptel/.

Appendix A. A Simple Example and XML fragments

http://www.ietf.org/rfc/rfc3261.txt
http://www.accessgrid.org
http://www.vrvs.org
http://java.sun.com/products/javamedia/jmf/2.1.1/index.html
http://www.openh323.org
http://snad.ncsl.nist.gov/proj/iptel/

In this section, we give a simple example to illustrate the basic procedures of XGSP. Assume a user named
“John” schedules a meeting named our chess game from 9:00AM to 12:00AM. The meeting has an A/V,
chat, chess application facilities. At 9:00AM, the XGSP conference manager activates this meeting. The
user “John”, “Bob” and “Jack” join the meeting. Since John is the conference chair, John creates a chess
public session. Bob and Jack join the session. John sets Bob to the white player and Jack to the black player.
And John sets himself as an observer. At 11:30, they finished the chess game. John terminates the chess
session. At 12:00, the conference manager deactivates the meeting.

When the meeting is scheduled, the following schedule record is kept:
< XGSPConference>
<ConferenceID> GameRoom </ConferenceID>
<ConferenceName> Our Chess Game </ConferenceName>
<ConferenceCreator> John </ConferenceCreator>
<ConferenceDate>
<StartTime> 9:00AM </StartTime> <EndTime> 12:00AM </EndTime>
</ConferenceDate>
<ConferenceType> Moderated </ConferenceType>

<ApplicationList>
<ApplicationID> Audio-Video </ApplicationID>
<ApplicationID> chat </ApplicationID>
<ApplicationID> chess </ApplicationID>
</ApplicationList>
</XGSPConference>

For the chess application, the conference manager has its application registry defining three different
roles: black, white and observer.
< ApplicationRegistry>
< ApplicationID> chess </ApplicationID>
<roles>
 <role>
 <roleName> black </roleName>
 <capabilities> player-first </capabilities>
 <roleName> white </roleName>
 <capabilities> player-second </capabilities>
 <roleName> observer </roleName>
 <capabilities> non-player </capabilities>
 </role>
</roles>
….
</ApplicationRegistry>

At 9:00AM, the XGSP conference manager activates this meeting. John creates a chess public session.
The following XML segment shows the message of “Create-Application-Session” indicating the new
application session ID is “chess-0”.
<CreateAppSession>
<ConferenceID> GameRoom </ConferenceID>
<ApplicationID> chess </ApplicationID>
<AppSessionID> chess-0 </AppSessionID>
<AppSession-Creator> John </AppSession-Creator>
<Private> false </Private>
</CreateAppSession>

After Bob and Jack join the session, John sets Bob to the white player, Jack to the black player and
himself to an observer. The following XML segment shows the content of the “Set-Application-Role”
messages:

<SetAppRole>
<AppSessionID> chess-0 </AppSessionID>
<UserID> Bob </UserID>

<RoleDescription> black </RoleDescription>
</SetAppRole>

<SetAppRole>
<AppSessionID> chess-0 </AppSessionID>
<UserID> Jack </UserID>
<RoleDescription> white </RoleDescription>
</SetAppRole>

<SetAppRole>
<AppSessionID> chess-0 </AppSessionID>
<UserID> John </UserID>
<RoleDescription> observer </RoleDescription>
</SetAppRole>

At 11:30, they finished the chess game. John terminates the chess session and they leave the
conference. At 12:00, the conference manager deactivates the meeting. The following XML segments show
the messages “Terminate-Application-Session” and “Terminate-Conference”.

<TerminateAppSession>
<ConerenceID> GameRoom </ConferenceID>
<AppSessionID> chess-0 </AppSessionID>
</TerminateAppSession>

<TerminateConference>
<ConferenceID> GameRoom </ConferenceID>
<Reason> the conference is over </Reason>
</TerminateConference>

